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SUMMARY

The Air Force Research Laboratory has identified multiple spacecraft formation flying as an enabling
technology for several future space missions. A key benefit of formation flying is the ability to reconfigure
the spacecraft formation to achieve different mission objectives. In this paper, generation of fuel optimal
manoeuvres for spacecraft formation reconfiguration is modelled and analysed as a multi-agent optimal
control problem. Multi-agent optimal control is quite different from the traditional optimal control for
single agent. Specifically, in addition to fuel optimization for a single agent, multi-agent optimal control
necessitates consideration of task assignment among agents for terminal targets in the optimization
process. In this paper, we develop an efficient hybrid optimization algorithm to address such a problem.
The proposed multi-agent optimal control methodology uses calculus of variation, task assignment, and
parameter optimization at different stages of the optimization process. This optimization algorithm
employs a distributed computational architecture. In addition, the task assignment algorithm, which
guarantees the global optimal assignment of agents, is constructed using the celebrated principle of
optimality from dynamic programming. A communication protocol is developed to facilitate decentralized
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decision making among agents. Simulation results are included to illustrate the efficacy of the proposed
multi-agent optimal control algorithm for fuel optimal spacecraft formation reconfiguration. Copyright#
2002 John Wiley & Sons, Ltd.

KEY WORDS: spacecraft formation reconfiguration; hybrid optimization; calculus of variation; dynamic
programming; genetic algorithm

1. INTRODUCTION

Control of multiple, homogeneous/heterogeneous agents is an enabling technology for many
military, aerospace, industrial, and commercial applications. For example, concepts of
intelligent vehicle highway system [1] and free-flying aircraft [2, 3] rely on interacting ground
and air vehicles, respectively. In addition, the problem of multiple mobile robots performing a
single task jointly is dependent on coordination between the robots [4]. Reconnaissance and
other military functions from space, air, ground, and sea may all greatly benefit from
cooperation between spacecraft, aircraft, tanks, carriers, submarines, weapons, etc., [5–8]. Even
as the paradigm of multi-agent missions holds enormous potential, significant issues concerning
their coordinated control remain unresolved. For example, a number of interesting dynamics
and control-related research problems arise in the control of multiple space vehicles such as
mission/path planning, on-board autonomy, orbital-debris avoidance, distributed control
architecture, communication and throughput constraints, etc.

A specific multiple aerospace vehicle application, which has recently received significant
attention, is distributed spacecraft formation flying (DSFF). DSFF represents the concept of
distributing the functionality and cost of a large, specialized spacecraft among multiple smaller,
less-expensive, cooperative spacecraft. It has been identified as an enabling technology by the
Air Force Research Laboratory and NASA for future space missions [9–15]. Specifically, as the
Air Force positions itself to become an ‘Air and Space Force’, it is envisaged that the DSFF
technology will facilitate critical elements of its vision, viz. virtual global awareness and rapid
access to space [16]. For example, Air Force’s TechSat-21 program [9, 10] relies on successful
development and deployment of DSFF technologies. Similarly, NASA is seeking rapid
advancements in DSFF technologies to enable the Earth Orbiter-I and the New Millennium
Interferometer programs [6, 11–13], among others. In particular, the DSFF paradigm is being
envisioned as a versatile, adaptable, and affordable space technology capable of accomplishing
diverse, multiple missions such as synthetic aperture radars, enhanced stellar optical
interferometers, virtual co-observing, stereo-imaging, correlated real-time sensing, and
simultaneous multipoint probing [14, 17]. The DSFF architecture necessitates interacting
spacecraft with system-wide common capabilities (communication, sensing, navigation, control,
etc.), operating collectively to accomplish shared mission objectives [9, 10]. The implementation
of the DSFF concept requires tight, autonomous, real-time control of the relative distance and
attitude between the participating spacecraft.

From a decision theory and control design perspective, the DSFF problem can be
decomposed into two different but closely related phases (i) distributed spacecraft formation
keeping and maintenance (DSFKM) and (ii) distributed spacecraft formation reconfiguration
(DSFR). The DSFKM control must be designed to enable the spacecraft to undergo periodic
relative motion such that a relative spatial pattern persists for several orbital periods with
minimal propellant expenditure [18]. For DSFKM, linear and nonlinear formation dynamic
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models have been developed and a variety of low-level control designs have been proposed to
guarantee the desired DSFKM performance [8, 15, 19–27]. Specifically, a linear formation
dynamic model known as the Hill’s equations is given in References [19, 20]. Hill’s equations
constitute the foundation for the application of various linear control techniques to the
DSFKM problem [22, 23, 26, 27]. Recently, Sedwick et al. [15] identified the set of feasible initial
conditions that annihilate the secular growth in time in the solution of Hill’s equations; thus,
yielding periodic relative motion for DSFKM. Based on the work in Reference [15], spatial
patterns for formation design were proposed in Reference [24]. In Reference [8], a class of
control laws was designed based on exact knowledge of the DSFF model that yields local
asymptotic position tracking and global exponential attitude tracking. A persistent disturbance
was employed in Reference [8] to account for model imperfection, measurement inaccuracies,
etc. In addition, an adaptive position controller was developed in Reference [28] that
compensates for unknown, constant disturbances while producing globally asymptotically
decaying position tracking errors. More recently, [21, 29] proposed nonlinear controllers for a
leader-follower DSFKM system, which ensure global asymptotic position tracking errors.
Furthermore, a formation initialization scheme was developed in Reference [29], which in the
ideal case yields a no-thrust, periodic relative motion between the leader–follower spacecraft
pair, and serves as a desired, relative motion trajectory. Finally, in Reference [25], an analytical
method was developed to identify families of formations invariant to the J2 perturbation in the
geopotential, a dominant cause for formation dispersion.

In contrast to the DSFKM problem, the DSFR problem has received scant attention (see
References [8, 21, 27, 29, 30–32] for recent exceptions). However, as discussed above, DSFR is an
essential component of the DSFF paradigm meriting utmost attention since it enables the
spacecraft formation to adaptively assume a desired formation pattern as dictated by mission
objectives. A critical issue in the DSFR problem is to determine fuel optimal manoeuvres when
an initial spacecraft formation is directed to reconfigure to a new formation pattern. In the
current literature [8, 21, 27, 29, 30, 32], the DSFR problem is addressed by utilizing low-level
trajectory tracking controllers, which reconfigure a spacecraft formation by considering the
initial formation to be an initial offset for the new formation pattern. The principal drawback of
these control designs is their unpredictable and non-optimal fuel expenditure for different
formation reconfiguration processes. In an alternative DSFR approach, fuel optimal
manoeuvres for all the spacecraft can be generated on-board. Subsequently, low-level
controllers can be used to track the fuel optimal manoeuvres in order to yield fuel optimal
formation reconfiguration. In this framework, the fuel cost for each spacecraft manoeuvre can
be calculated, on-demand, and the total fuel expenditure for formation reconfiguration is
minimized. Recall that the linearized relative dynamics of spacecraft, given by Hill’s equations,
is known to approximate the dynamic behaviour of spacecraft relative motion fairly well for
short-period manoeuvres and small spatial separation between spacecraft. It is anticipated that
the typical spacecraft formation reconfiguration manoeuvres will be executed within few orbital
periods with small spatial separation between spacecraft (few kilometers). Thus, in this paper,
we utilize the linearized relative dynamics of spacecraft to construct an optimization algorithm
that generates the fuel optimal formation reconfiguration trajectories with low computational
effort.

The traditional theory of calculus of variation and optimal control can generate fuel optimal
trajectories for a single spacecraft with various types of boundary conditions. However, for the
DSFR problem we face the challenge of generating a set of fuel optimal manoeuvres for
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multiple spacecraft simultaneously. Specifically, for the DSFR problem we must (i) determine
an optimal manoeuvre time interval for each spacecraft to execute its fuel optimal manoeuvre
and (ii) solve an assignment problem so that the position arrangement for the spacecraft in the
new formation pattern is optimal. Finally, as shown in Section 2.5 of this paper, frequently, a
given formation pattern may leave certain formation parameters unspecified, which must be
selected to ensure fuel optimal spacecraft formation reconfiguration. Thus, the fuel optimal
DSFR problem poses a multi-agent optimal control problem necessitating a hybrid
optimization involving calculus of variation, task assignment, and parameter optimization. In
this paper, we develop an optimization algorithm that solves such a problem efficiently. In
addition, we propose a communication protocol to facilitate a distributed computational
architecture for the optimization algorithm.

The contents of this paper are as follows. In Section 2, we present a mathematical model for
spacecraft formation reconfiguration. The formation reconfiguration process is analysed
qualitatively in Section 3. In Section 4, we develop an optimization algorithm to solve the fuel
optimal spacecraft formation reconfiguration problem. Simulation results are included in
Section 5 to illustrate the efficacy of the proposed optimization algorithm for spacecraft
formation reconfiguration. Finally, concluding remarks are given in Section 6.

2. PROBLEM MODELLING AND ANALYSIS

2.1. Coordinate system description

In the current literature, the DSFF dynamics is typically characterized via a leader-fixed non-
inertial coordinate frame [15, 21–24, 26, 27, 29, 31–33]. A schematic drawing of such a coordinate
frame is given in Figure 1, where we make the following considerations: (i) an inertial coordinate
frame fX ;Y ;Zg is attached to the centre of the Earth; (ii) R‘ðtÞ 2 R3 denotes the position vector
from the origin of the inertial coordinate frame to the leader spacecraft; (iii) in the leader-fixed
non-inertial coordinate frame fx‘; y‘; z‘g, the y‘-axis points along the direction of the vector
R‘ðtÞ, the z‘-axis points along the direction of the orbital angular momentum of the leader
spacecraft, and the x‘-axis is placed such that fx‘; y‘; z‘g forms a right-handed coordinate frame;
and (iv) rðtÞ 2 R3 denotes the position vector from the origin of the coordinate frame fxl ; yl ; zlg
to the follower spacecraft.

Unfortunately, in a general problem setting, the leader-fixed non-inertial coordinate frame
presents severe constraints. First, any acceleration of the leader spacecraft influences the basic
dynamics of the formation significantly. In particular, since the origin of the fx‘; y‘; z‘g
coordinate frame is attached to the leader spacecraft and the fx‘; y‘; z‘g coordinate frame
rotates with the leader spacecraft’s orbital motion, the follower spacecraft dynamics in such a
frame is influenced by some non-inertial forces. If the leader spacecraft is in an exact Keplerian
(circular or elliptical) orbital motion, the non-inertial forces entering the follower spacecraft
dynamics can be expressed in a relatively simple form [19, 21, 22, 26, 27, 29, 32]. However, when
the leader spacecraft undergoes a non-Keplerian motion, e.g. during an orbital manoeuvre, the
non-inertial forces in the follower spacecraft dynamics become quite complicated so that one
can hardly predict the follower spacecraft dynamics. Note that, in practice, the leader
spacecraft’s orbit may need to be changed from time to time as dictated by mission
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requirements; thus, there is no reason to assume that the leader spacecraft will always be in a
fixed Keplerian orbit.

Second, in many formation reconfiguration processes, a trivial choice for the leader spacecraft
may not even exist. For example, consider two clusters of spacecraft coasting together in the
beginning, as shown in Figure 2(a). Each cluster of spacecraft is composed of four spacecraft
with one spacecraft located at the geometric centre and the other three spacecraft distributed on
a thrust-free periodic relative orbit. The two spacecraft at the two geometric centres are in the
same circular Earth orbit AB and their separation distance is large enough so that the two
clusters do not overlap with one another; yet this distance is quite small compared to the radius
of the orbit AB. Now, let all the spacecraft in the two clusters manoeuvre so that the two
clusters combine into one. In the new formation, all the spacecraft are distributed on two
concentric thrust-free periodic relative orbits (4 spacecraft on each) and the geometric centre of
the new formation pattern (not occupied by any spacecraft) moves along the circular Earth orbit
AB (as shown in Figure 2(b)). Clearly, in such a formation reconfiguration process there is no
trivial choice for a leader spacecraft on which we can attach a non-inertial coordinate frame
throughout the process.

Figure 1. Leader-fixed non-inertial coordinate frame in the DSFF system.

Figure 2. (a) Initial two cluster spacecraft formation; (b) reconfigured one cluster spacecraft formation.
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In this paper, in order to overcome the aforementioned shortcomings of the leader-fixed non-
inertial coordinate frame, we consider a non-inertial coordinate frame fixed on an imaginary
leader spacecraft. Specifically, we attach a non-inertial coordinate frame fxI; yI; zIg to an
imaginary point, the so called imaginary leader spacecraft, that is orbiting the Earth. Let
RIðtÞ 2 R3 denote the position vector of the imaginary leader spacecraft in the Earth-centred
inertial coordinate frame and let ’RRIðtÞ 2 R3 be the time derivative of RIðtÞ. Then, we construct
the fxI; yI; zIg coordinate frame such that the yI-axis points along the direction of the vector
RIðtÞ, the zI-axis points along the direction of the vector RIðtÞ � ’RRIðtÞ, and the xI-axis is placed
such that fxI; yI; zIg forms a right-handed coordinate frame. In this paper, we let RIðtÞ follow an
ideal Keplerian circular Earth orbit that represents the approximate average motion of the
spacecraft formation. In such a coordinate frame, the formation dynamics is characterized
analogous to the leader-fixed coordinate frame case, where a real leader spacecraft exists in an
ideal Keplerian orbit. Furthermore, in the proposed fxI; yI; zIg coordinate frame, every
spacecraft in the formation can manoeuvre freely without influencing the basic formation
dynamics.

Now in the aforementioned formation reconfiguration example, we can choose an imaginary
point, which is also in the circular Earth orbit AB and close enough to the initial formation, as
an imaginary leader spacecraft. This imaginary leader spacecraft can serve as the origin of the
coordinate frame fxI; yI; zIg throughout the formation reconfiguration process described above.

2.2. Thrust-free periodic trajectory for linearized spacecraft relative motion

In this paper, we limit ourselves to DSFF where an imaginary leader spacecraft can be chosen to
follow an exact circular Earth orbit and all spacecraft in the formation fly along some thrust-free
periodic trajectories relative to the fxI; yI; zIg coordinate frame. See References
[15, 24, 27, 29, 30, 32] for further details on the design of thrust-free periodic formation
trajectories. After the local linearization of the formation dynamics in the fxI; yI; zIg coordinate
frame, the thrust-free periodic trajectories for spacecraft in the formation are the periodic
solutions of the homogeneous linear Hill’s equations written in the fxI; yI; zIg coordinate frame
[15, 24, 27]. These trajectories form some closed periodic orbits in the fxI; yI; zIg coordinate
frame [15, 24, 27]. Generally, in an n spacecraft formation, there are n0 closed periodic orbits,
where n04n since more than one spacecraft may be distributed on one closed periodic orbit. The
distribution of the spacecraft on a particular closed periodic orbit can be specified by the phase
difference of their periodic motion in this closed periodic orbit. This provides us a simple way to
standardize the form of the parametric equations, which are used to describe formation patterns
and spacecraft trajectories in the fxI; yI; zIg coordinate frame. Note that for a follower
spacecraft the thrust-free periodic solution of the linear Hill’s equation can be expressed as

xðtÞ ¼ �2
vy0
o

cos ðoðt� t0ÞÞ þ XC

yðtÞ ¼
vy0
o

sin ðoðt� t0ÞÞ

zðtÞ ¼ z0 cos ðoðt� t0ÞÞ þ
vz0
o

sin ðoðt� t0ÞÞ ð1Þ

where o is the orbital angular velocity of the imaginary leader spacecraft, t0 is the time when the
follower spacecraft passes the xI–zI plane from the yþI side to the y�I side, vy0 and vz0 are the yI
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and zI velocity components, respectively, of the follower spacecraft relative to the fxI; yI; zIg
coordinate frame at t0, and z0 is the zI position component of the follower spacecraft relative to
the fxI; yI; zIg coordinate frame at t0. It is not difficult to see that the xI velocity component of
the follower spacecraft relative to the fxI; yI; zIg coordinate frame is zero at t0. Since the follower
spacecraft is passing the xI–zI plane from the yþI side to the y�I side at t0, vy0 is negative. Note
that this trajectory forms a closed elliptical orbit in the fxI; yI; zIg coordinate frame, with the
geometric center located at ðXC; 0; 0Þ [24, 33]. We call such an orbit a primary formation orbit.
Let y ¼4 � ot0 be the initial phase angle of the follower spacecraft in such a primary formation
orbit, then its trajectory (1) can be expressed as

xðtÞ ¼ �2
vy0
o

cos ðotþ yÞ þ XC

yðtÞ ¼
vy0
o

sin ðotþ yÞ

zðtÞ ¼ z0 cos ðotþ yÞ þ
vz0
o

sin ðotþ yÞ ð2Þ

This form of parametric equations will be used as the standard form when we describe the
thrust-free periodic spacecraft trajectories in the fxI; yI; zIg coordinate frame and will be
mentioned as the primary expression in this paper. In the case where the relative motion of
follower spacecraft is contained in the xI–zI plane, t0 is arbitrary and vy0 ¼ 0.

Note that if another spacecraft is distributed on the same primary formation orbit, the
primary expression for its thrust-free periodic trajectory will have the same yI and zI relative
velocity components vy0 and vz0 , respectively, and the same zI relative position component z0,
when it passes the xI–zI plane from the yþI side to the y�I side. So, a primary formation orbit can
be specified by a set of parameters ðXC; vy0 ; vz0 ; z0Þ, which is called the primary orbital parameter
set for the primary formation orbit.

2.3. Formation pattern

In this paper, an n spacecraft periodic spatial formation pattern is modelled as a
set of n allowable positions that are distributed on n0 primary formation orbits. We
describe this set of allowable positions by primary expressions in the fxI; yI; zIg coordinate
frame. Thus, this set of allowable positions represents the locations of the spacecraft in the
formation as time-dependent functions. The number of allowable positions in the rth primary
formation orbit, r ¼ 1; . . . ; n0, is denoted as pr, where pr51 and

Pn0

r¼1 pr ¼ n. Furthermore, the
allowable positions distributed on the rth primary formation orbit, r ¼ 1; . . . ; n0, are referenced
as Pr

i , i ¼ 1; . . . ; pr.
Let the primary orbital parameter set for the rth primary formation orbit be

ðXCr
; vy0r ; vz0r ; z0r Þ. Then, the primary expression for the allowable position Pr

1 is expressed as

xPr
1
ðtÞ ¼ �2

vy0r
o

cos ðotþ yPr
1
Þ þ XCr

yPr
1
ðtÞ ¼

vy0r
o

sin ðotþ yPr
1
Þ

zPr
1
ðtÞ ¼ z0r cos ðotþ yPr

1
Þ þ

vz0r
o

sin ðotþ yPr
1
Þ ð3Þ
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In general, for the allowable position Pr
i , i ¼ 1; . . . ; pr, on the rth primary formation orbit,

r ¼ 1; . . . ; n0, the primary expression is given by

xPr
i
ðtÞ ¼ �2

vy0r
o

cos ðotþ yPr
1
þ bi1rÞ þ XCr

yPr
i
ðtÞ ¼

vy0r
o

sin ðotþ yPr
1
þ bi1rÞ

zPr
i
ðtÞ ¼ z0rcos ðotþ yPr

1
þ bi1r Þ þ

vz0r
o

sin ðotþ yPr
1
þ bi1r Þ ð4Þ

where bi1r , i ¼ 1; . . . ; pr, is the phase difference between the periodic motions of the spacecraft
located at the allowable position Pr

1 and Pr
i . Note that b11r ¼ 0 is immediate.

To illustrate the above concept, consider a 4 spacecraft, 1 primary orbit formation pattern
whose projection on the ground is always a square, with each vertex being the projection of a
spacecraft in the formation (see Figure 3). This formation requirement is satisfied by selecting
the primary orbital parameter set for the primary formation orbit as ðXC1

; u; 2u; 0Þ, where u50.
Then the formation pattern is a set of allowable positions fXP1

1
ðtÞ; . . . ;XP1

4
ðtÞg, where

XP1
i
ðtÞ ¼4 ðxP1

i
ðtÞ; yP1

i
ðtÞ; zP1

i
ðtÞÞ, i ¼ 1; . . . ; 4. In addition, xP1

i
ðtÞ, yP1

i
ðtÞ, and zP1

i
ðtÞ satisfy

xP1
i
ðtÞ ¼ �2

u

o
cos ðotþ yP1

1
þ bi11 Þ þ XC1

yP1
i
ðtÞ ¼

u

o
sin ðotþ yP1

1
þ bi11 Þ

zP1
i
ðtÞ ¼

2u

o
sin ðotþ yP1

1
þ bi11Þ ð5Þ

where i ¼ 1; . . . ; 4, b111 ¼ 0, b211 ¼ p=2, b311 ¼ p, and b411 ¼ 3p=2.
For notational convenience, in the balance of this paper, the n allowable positions in

an n spacecraft formation pattern are indexed using only a subscript j, where
j 2 f1; . . . ; p1; p1 þ 1; . . . ; p1 þ p2; . . . ; p1 þ � � � þ pðn0�1Þ þ 1; . . . ; ng. Thus, an allowable position
Pr
i in a subscript-only notation is referenced as Pj, which refers to the jth allowable position in

the formation pattern, where j ¼ p1 þ � � � þ pðr�1Þ þ i.

2.4. Spacecraft permutation in a formation pattern

In many cases, spacecraft locations may be interchangeable among all the allowable positions in
a formation pattern. For example, in an n spacecraft formation, the spacecraft can be arranged
onto the n allowable positions in Pn

n ¼ n! many different ways, where P is the permutation
operator defined as Pj

n ¼4 n!=ðn� jÞ! [34] and ‘!’ is the factorial operator [34]. Every such
arrangement is called a spacecraft permutation for the formation pattern. Specifically, we label
the spacecraft with n consecutive integers from 1 to n and use subscript Si to refer to spacecraft i.
Next, we define XSi ðtÞ ¼

4 ðxSi ðtÞ; ySi ðtÞ; zSi ðtÞÞ to denote the thrust-free periodic trajectory for
spacecraft i, i ¼ 1; . . . ; n. Then a spacecraft permutation can be given by H ¼ ½h1; . . . ; hn�, where
hi, i ¼ 1; . . . ; n, takes integer values from 1 to n, and hi 6¼ hj for i 6¼ j. Specifically, for
permutationH ¼ ½h1; . . . ; hn�, we have XSh1

¼ XP1
; . . . ;XShn

¼ XPn
, i.e. spacecraft Sh1 is located at

the 1st allowable position in the formation pattern, etc. For example, if we label the spacecraft
with consecutive integers from 1 to 4 in the 4 spacecraft formation described before, we get
XS1 ¼ XP1

, XS2 ¼ XP2
, XS3 ¼ XP3

, and XS4 ¼ XP4
, which yields a spacecraft permutation
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H ¼ ½1; 2; 3; 4�. However, if we let XS4 ¼ XP1
, XS2 ¼ XP2

, XS3 ¼ XP3
, and XS1 ¼ XP4

, we obtain a
different spacecraft permutation H ¼ ½4; 2; 3; 1� by interchanging the locations of spacecraft 1
and 4 while the formation pattern remains the same.

2.5. Formation reconfiguration

We describe a general formation reconfiguration as follows. Each spacecraft in an n spacecraft
formation originally fly along their thrust-free periodic trajectories, which are described by some
primary expressions in fxI; yI; zIg. Such a formation will reconfigure to an m spacecraft
formation whose pattern is described by a set of m allowable spacecraft positions, which are also
expressed by primary expressions in fxI; yI; zIg. For the new formation, m indicates the number
of spacecraft that are needed to participate in the new formation pattern and it is restricted by
m4n.

So far, we have assumed that the new formation pattern is uniquely specified. However, in
many cases, the mission requirements for formation reconfiguration will not provide enough
information to uniquely specify the new formation pattern, i.e. in the primary expressions for
the new formation pattern some parameters may be chosen arbitrarily among some allowable
values permitted by the mission requirements. Thus, there can be a family of new formation
patterns that satisfy the mission requirements. For example, in the 4 spacecraft formation of
Figure 3, if a square projection on the ground with side length 2

ffiffiffi
2

p
u=o is the only requirement,

then yP1
1
and XC1

can be chosen freely in the primary expressions. In general, we assume that the
mission requirements leave k independent parameters unspecified in the primary expressions for
the new formation pattern. Let these k independent parameters be denoted by l1; . . . ; lk. In

Figure 3. Spacecraft formation with square projection on the ground.
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addition, let L1; . . . ;Lk denote the sets of values for l1; . . . ; lk, respectively, which are permitted
by the mission requirements. In this paper, we consider Li, i ¼ 1; . . . ; k, to be bounded sets. Let
*ll ¼4 ½l1; . . . ; lk�, where *ll 2 *LL ¼4 L1 � � � � � Lk. Note that, together with the given mission
requirements, *ll 2 *LL uniquely specifies a new formation pattern.

For a spacecraft, a trajectory that smoothly connects the spacecraft’s thrust-free periodic
trajectory in the original formation and its thrust-free periodic trajectory in the new formation is
referred to as a spacecraft manoeuvre. Specifically, a manoeuvre for spacecraft i to reach the jth
allowable position in the new formation pattern that satisfies the given mission requirements
and is also specified by *ll, starting at the time instant tai and ending at the time instant tbi ,
tai5tbi , is defined by

mi; jðt; tai ; tbi ; *llÞ ¼
4 ðxmi; j ðt; *llÞ; ymi; j ðt; *llÞ; zmi; j ðt; *llÞÞ; tai4t4tbi ð6Þ

where xmi; j ðt; *llÞ, ymi; j ðt; *llÞ, and zmi; j ðt; *llÞ are the xI; yI, and zI components, respectively, of the
spacecraft manoeuvre, and are twice differentiable with respect to t since spacecraft’s
acceleration is finite. The statement that the manoeuvre starts at tai and ends at tbi is
mathematically interpreted to mean that the spacecraft position and velocity satisfy the
boundary conditions

qmi; j ðt; *llÞ
��
t¼tai

¼ q
Si
ðtÞ

���
t¼tai

;
d

dt
ðqmi; j ðt; *llÞÞ

����
t¼tai

¼
d

dt
ðq

Si
ðtÞÞ

����
t¼tai

ð7Þ

qmi; j ðt; *llÞ
��
t¼tbi

¼ q
Pj
ðt; *llÞ

���
t¼tbi

;
d

dt
ðqmi; j ðt; *llÞÞ

����
t¼tbi

¼
d

dt
ðq

Pj
ðt; *llÞÞ

����
t¼tbi

ð8Þ

where q 2 fx; y; zg.
We emphasize that ‘starting at tai ’ does not mean that the manoeuvre ðxmi; j ðt; *llÞ; ymi; j ðt; *llÞ,

zmi; j ðt; *llÞÞ is necessarily different from the initial trajectory ðxSi ðtÞ; ySi ðtÞ; zSi ðtÞÞ right after tai .
Similarly, ‘ending at tbi ’ does not mean that the manoeuvre ðxmi; j ðt; *llÞ; ymi; j ðt; *llÞ; zmi; j ðt; *llÞÞ can
not match the thrust-free trajectory ðxPj

ðt; *llÞ; yPj
ðt; *llÞ; zPj

ðt; *llÞÞ in the new formation pattern
before tbi . This enables us to extend the manoeuvre mi; jðt; tai ; tbi ; *llÞ to a manoeuvre that transfers
spacecraft i to the jth allowable position in the new formation pattern, starting at t0ai and ending
at t0bi , where t0ai4tai5tbi4t0bi . In particular, let

qme
i; j
ðt; *llÞ ¼4

q
Si
ðtÞ t0ai4t4tai

qmi; j ðt; *llÞ tai4t4tbi ; q 2 fx; y; zg

q
Pj
ðt; *llÞ tbi4t4t0bi

8>>>><
>>>>:

ð9Þ

then we define an extended manoeuvre as

me
i; jðt; tai ; tbi ; t

0
ai
; t0bi ;

*llÞ ¼4 ðxme
i; j
ðt; *llÞ; yme

i; j
ðt; *llÞ; zme

i; j
ðt; *llÞÞ; t0ai4t4t0bi ; t

0
ai
4tai ; tbi4t0bi ð10Þ

which ‘starts at t0ai ’ and ‘ends at t0bi ’. Note that the manoeuvre ‘starts at t0ai ’ and ‘ends at t0bi ’
follows from the fact that the boundary conditions (7) and (8) are automatically satisfied at t0ai
and t0bi , respectively, by the way we construct ðxme

i; j
ðt; *llÞ; yme

i; j
ðt; *llÞ; zme

i; j
ðt; *llÞÞ in (9). We call

me
i; jðt; tai ; tbi ; t

0
ai
; t0bi ;

*llÞ a primary extension of the manoeuvre mi; jðt; tai ; tbi ; *llÞ from the time
interval ½tai ; tbi � to the time interval ½t0ai ; t

0
bi
�. Figure 4 illustrates the notion of extended

manoeuvre.
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3. FUEL OPTIMAL SPACECRAFT FORMATION RECONFIGURATION:
MATHEMATICAL PRELIMINARIES

In this section, we begin by considering the fuel cost for spacecraft manoeuvres and their
primary extensions to lay the foundation for developing the fuel optimal formation
reconfiguration manoeuvres. First, let the fuel cost for spacecraft i to execute manoeuvre
mi; jðt; tai ; tbi ; *llÞ be denoted as Iðmi; jðt; tai ; tbi ; *llÞÞ. The specific form of this fuel cost is related to
the formation dynamics model and the spacecraft thrust model as discussed in Section 4.2. Next,
note that for the extended manoeuvre ðxme

i; j
ðt; *llÞ; yme

i; j
ðt; *llÞ; zme

i; j
ðt; *llÞÞ in (9), the trajectory

extensions lie on the thrust-free periodic trajectories of spacecraft i in the original formation and
in the new formation. Thus, we have the following useful property for the fuel cost of the
spacecraft manoeuvre mi; jðt; tai ; tbi ; *llÞ and its primary extension me

i; jðt; tai ; tbi ; t
0
ai
; t0bi ;

*llÞ, even
without the explicit knowledge of its specific form,

Iðme
i; jðt; tai ; tbi ; t

0
ai
; t0bi ;

*llÞÞ ¼ Iðmi; jðt; tai ; tbi ; *llÞÞ; t0ai4tai5tbi4t0bi ð11Þ

Next, we assume that each spacecraft in the formation is functionally identical, i.e. every
spacecraft has the capability to perform the same tasks if required. Then, two different
spacecraft permutations for the new formation pattern will not affect the formation
performance. Therefore, in the n to m formation reconfiguration process, a spacecraft starting
at its initial thrust-free periodic trajectory can manoeuvre to different allowable positions in the
new formation pattern for different spacecraft permutations.

Before proceeding, for the time interval ½ta; tb�, we define

Tm ¼4 f½tah1 ; tbh1 �; . . . ; ½tahm ; tbhm �g; ta4tahj5tbhj4tb; j ¼ 1; . . . ;m ð12Þ

%TTm ¼4 f½tah1 ; tbh1 �; . . . ; ½tahm ; tbhm �g; tahj ¼ ta; tbhj ¼ tb; j ¼ 1; . . . ;m ð13Þ

Figure 4. (a) Original manoeuvre; (b) extended manoeuvre.
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Similarly, for the time interval ½t0a; t
0
b�, we define

T 0
m ¼4 f½t0ah1 ; t

0
bh1

�; . . . ; ½t0ahm ; t
0
bhm

�g; t0a4t0ahj
5t0bhj

4t0b; j ¼ 1; . . . ;m ð14Þ

%TT
0
m ¼4 f½t0ah1 ; t

0
bh1

�; . . . ; ½t0ahm ; t
0
bhm

�g; t0ahj
¼ t0a; t

0
bhj

¼ t0b; j ¼ 1; . . . ;m ð15Þ

Next, for the set Tm, we define the notion of a general manoeuvre set. Let a new formation
pattern be specified by a set of independent parameters *ll 2 *LL and let a spacecraft permutation
H ¼ ½h1; . . . ; hm� for this new formation pattern be given. Then, a general manoeuvre set is
defined as a set of manoeuvres that transfers m spacecraft from their initial thrust-free
trajectories in the original n spacecraft formation to the m allowable positions in the new
formation pattern specified by *ll and according to the spacecraft permutation H. In particular, a
general manoeuvre set for the set Tm is defined as

Mðt;H;Tm; *llÞ ¼
4 fmh1;1ðt; tah1 ; tbh1 ;

*llÞ; . . . ;mhm ;mðt; tahm ; tbhm ;
*llÞg ð16Þ

It follows from (16) that each spacecraft manoeuvre within the general manoeuvre set may start
and end at different time instants. In particular, neither tahi ; tahj nor tbhi ; tbhj , i; j ¼ 1; . . . ;m, i 6¼ j,
are necessary to be equal. Furthermore, no spacecraft manoeuvre starts earlier than ta or ends
later than tb; i.e. ta4tahj and tbhj4tb, j ¼ 1; . . . ;m.

In the special case where all manoeuvres start at the same time ta and end at the same time tb,
i.e. tahj ¼ ta and tbhj ¼ tb, j ¼ 1; . . . ;m, the manoeuvre set is called a time-regulated manoeuvre set
for the set %TTm and is defined as

Mðt;H; %TTm; *llÞ ¼
4 fmh1;1ðt; ta; tb; *llÞ; . . . ;mhm ;mðt; ta; tb; *llÞg ð17Þ

Similar to the concept of primary extended manoeuvre for a single spacecraft, on the time
interval ½t0a; t

0
b� with t0a4ta and tb4t0b, we define a time-regulated primary extension for the

general manoeuvre set Mðt;H;Tm; *llÞ for the set %TT
0
m, with t0a4ta4minj¼1;...;mtahj and

t0b5tb5maxj¼1;...;mtbhj , as

Meðt;H;Tm; %TT
0
m;

*llÞ ¼4 fme
h1;1

ðt; tah1 ; tbh1 ; t
0
a; t

0
b;
*llÞ; . . . ;me

hm;m
ðt; tahm ; tbhm ; t

0
a; t

0
b;
*llÞg ð18Þ

Next, we define the total fuel cost for a manoeuvre set as the sum of the fuel cost for each
manoeuvre of the manoeuvre set. Thus, for the general manoeuvre set Mðt;H;Tm; *llÞ, the total
fuel cost is

IT ðMðt;H;Tm; *llÞÞ ¼
4
Xm
j¼1

Iðmhj ; jðt; tahj ; tbhj ;
*llÞÞ ð19Þ

In the special case where the manoeuvre set is time-regulated the total fuel cost is given by

IT ðMðt;H; %TTm; *llÞÞ ¼
Xm
j¼1

Iðmhj ; jðt; ta; tb; *llÞÞ ð20Þ

Before proceeding, recall (11) for the important property of the fuel cost of a single extended
manoeuvre. Then, the total fuel cost for a time-regulated primary extension of a general
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manoeuvre set Mðt;H;Tm; *llÞ yields

IT ðMeðt;H;Tm; %TT
0
m;

*llÞÞ ¼
Xm
j¼1

Iðme
hj ; j

ðt; tahj ; tbhj ; t
0
a; t

0
b;
*llÞÞ

¼
Xm
j¼1

Iðmhj ; jðt; tahj ; tbhj ;
*llÞÞ

¼ IT ðMðt;H;Tm; *llÞÞ ð21Þ

i.e. the total fuel cost for a general manoeuvre set Mðt;H;Tm; *llÞ is the same as the total fuel cost
for its time-regulated primary extension Meðt;H;Tm; %TT

0
m;

*llÞ for any t0a4ta4minj¼1;...;mtahj and
t0b5tb5maxj¼1;...;mtbhj .

Among all the manoeuvres mi; jðt; tai ; tbi ; *llÞ that start at tai and end at tbi , tai5tbi , and transfer
spacecraft i to the jth allowable position in the new formation pattern, which is specified by *ll,
we define a fuel optimal manoeuvre m*

i; jðt; tai ; tbi ; *llÞ as a manoeuvre whose fuel cost is smaller
than (or at worst equal to) the fuel cost for any other manoeuvre, i.e.

Iðm*
i; jðt; tai ; tbi ; *llÞÞ4Iðmi; jðt; tai ; tbi ; *llÞÞ ð22Þ

for all mi; jðt; tai ; tbi ; *llÞ.
Next, for a specified spacecraft permutation H, a set of chosen independent parameters *ll for

the new formation pattern, and a set of manoeuvre time intervals Tm for all spacecraft in a
general manoeuvre set, we define a fuel optimal manoeuvre set as

M* ðt;H;Tm; *llÞ ¼
4 fm*

h1;1
ðt; tah1 ; tbh1 ;

*llÞ; . . . ;m*
hm ;m

ðt; tahm ; tbhm ;
*llÞg ð23Þ

Since the total fuel cost for a manoeuvre set is the sum of the fuel cost for each spacecraft
manoeuvre in that manoeuvre set, using (22), we obtain

IT ðM* ðt;H;Tm; *llÞÞ ¼
Xm
j¼1

Iðm*
hj ; j

ðt; tahj ; tbhj ;
*llÞÞ

4
Xm
j¼1

Iðmhj ; jðt; tahj ; tbhj ;
*llÞÞ

¼ IT ðMðt;H;Tm; *llÞÞ ð24Þ

for all Mðt;H;Tm; *llÞ. Thus, it follows from (24) that the total fuel cost for the fuel optimal
manoeuvre set M* ðt;H;Tm; *llÞ is smaller than (or at worst equal to) the total fuel cost for any
other manoeuvre set Mðt;H;Tm; *llÞ, which transfers m spacecraft from their initial thrust-free
trajectories in the original formation to the m allowable positions according to the spacecraft
permutation H in the new formation pattern specified by *ll and whose manoeuvre time intervals
are given by Tm.

Note that the total fuel cost IT ðM* ðt;H;Tm; *llÞÞ is a function of H, Tm, and *ll. In
order to minimize the total fuel cost for a spacecraft formation reconfiguration process, we must
find optimal H * ;T *

m ; and *ll* , such that the total fuel cost for M* ðt;H * ;T *
m ; *ll* Þ is smaller than

(or at worst equal to) the total fuel cost for M* ðt;H;Tm; *llÞ with any other choice of H, Tm, and
*ll; i.e.

IT ðM* ðt;H * ;T *
m ; *ll* ÞÞ4IT ðM* ðt;H;Tm; *llÞÞ ð25Þ
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Next, for a specified Tm, a choice of H and *ll is called conditionally optimal if the total
fuel cost for M* ðt;H *

Tm
;Tm; *ll*

Tm
Þ is smaller than (or at worst equal to) the total fuel cost for

M* ðt;H;Tm; *llÞ with any other choice of H and *ll, with the specified Tm, i.e.

IT ðM* ðt;H *
Tm
;Tm; *ll*

Tm
ÞÞ4IT ðM* ðt;H;Tm; *llÞÞ ð26Þ

Now we present the principal result of this section.

Theorem 3.1
On the time interval ½ta; tb�, for arbitrary Tm,

IT ðM* ðt;H *
%TTm
; %TTm; *ll*

%TTm
ÞÞ4IT ðM* ðt;H *

Tm
;Tm; *ll*

Tm
ÞÞ ð27Þ

where Tm and %TTm are given according to (12) and (13), respectively.

Proof
First, note that H *

%TTm
and *ll*

%TTm
in (27) represent the conditionally optimal choice of H and *ll for

the specified %TTm. Thus, according to (26), we obtain,

IT ðM* ðt;H *
%TTm
; %TTm; *ll*

%TTm
ÞÞ4IT ðM* ðt;H; %TTm; *llÞÞ ð28Þ

for all H and *ll. Next, assume that (27) does not hold for some #TTm, i.e. there exists a
#TTm ¼ f½#ttah1 ; #ttbh1 �; . . . ; ½#ttahm ; #ttbhm �g, ta4#ttahj5#ttbhj4tb, j ¼ 1; . . . ;m, such that

IT ðM* ðt;H *
%TTm
; %TTm; *ll*

%TTm
ÞÞ > IT ðM* ðt;H *

#TTm
; #TTm; *ll*

#TTm
ÞÞ ð29Þ

Now for the manoeuvre set M* ðt;H *
#TTm
; #TTm; *ll*

#TTm
Þ and its time-regulated primary extension

M*eðt; H *
#TTm
; #TTm; %TTm; *ll*

#TTm
Þ, (21) yields

IT ðM*eðt;H *
#TTm
; #TTm; %TTm; *ll*

#TTm
ÞÞ ¼ IT ðM* ðt;H *

#TTm
; #TTm; *ll*

#TTm
ÞÞ ð30Þ

Next, we define a time-regulated manoeuvre set Mðt;H *
#TTm
; %TTm; *ll*

#TTm
Þ ¼4 M*eðt;H *

#TTm
; #TTm; %TTm; *ll*

#TTm
Þ.

It now follows that

IT ðMðt;H *
#TTm
; %TTm; *ll*

#TTm
ÞÞ ¼ IT ðM*eðt;H *

#TTm
; #TTm; %TTm; *ll*

#TTm
ÞÞ ð31Þ

Combining (29)–(31), we obtain

IT ðM* ðt;H *
%TTm
; %TTm; *ll*

%TTm
ÞÞ > IT ðMðt;H *

#TTm
; %TTm; *ll*

#TTm
ÞÞ ð32Þ

It follows from (24) that

IT ðMðt;H *
#TTm
; %TTm; *ll*

#TTm
ÞÞ5IT ðM* ðt;H *

#TTm
; %TTm; *ll*

#TTm
ÞÞ ð33Þ

Therefore, there exist H *
#TTm

and *ll*
#TTm

such that

IT ðM* ðt;H *
%TTm
; %TTm; *ll*

%TTm
ÞÞ > IT ðM* ðt;H *

#TTm
; %TTm; *ll*

#TTm
ÞÞ ð34Þ

which contradicts (28). Consequently, (27) holds for all Tm. &

According to Theorem 3.1, since (27) holds for arbitrary Tm, it holds for T *
m , which is an

optimal choice of Tm. Thus

IT ðM* ðt;H *
%TTm
; %TTm; *ll*

%TTm
ÞÞ4IT ðM* ðt;H *

T *
m
;T *

m ; *ll*
T *
m
ÞÞ ð35Þ
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Since H *
T *
m

and *ll*
T *
m

are conditionally optimal for T *
m , which is the optimal choice of Tm, it

follows that

IT ðM* ðt;H *
T *
m
;T *

m ; *ll*
T *
m
ÞÞ4 IT ðM* ðt;H *

Tm
;Tm; *ll*

Tm
ÞÞ

4 IT ðM* ðt;H;Tm; *llÞÞ ð36Þ

for all H, Tm, and *ll. Combining (35) and (36), we obtain

IT ðM* ðt;H *
%TTm
; %TTm; *ll*

%TTm
ÞÞ4IT ðM* ðt;H;Tm; *llÞÞ ð37Þ

for all H, Tm, and *ll.

Corollary 3.1
On the time interval ½ta; tb�, H *

%TTm
, %TTm, and *ll*

%TTm
are optimal in the sense that the total fuel cost for

M* ðt;H *
%TTm
; %TTm; *ll*

%TTm
Þ is smaller than (or at worst equal to) the total fuel cost for M* ðt;H;Tm; *llÞ

with any other choice of H, Tm, and *ll.
Now we consider the practical implication of this result to a spacecraft formation

reconfiguration process, where, given by the mission requirement, the earliest allowable starting
time and the latest allowable ending time for spacecraft manoeuvres are ta and tb, respectively.
The significance of Corollary 3.1 is that our search space for the optimal choice of H, Tm, and *ll
can be reduced to a considerably smaller search space for the conditionally optimal choice of H
and *ll with the specified %TTm when we minimize the total fuel cost IT ðM* ðt;H;Tm; *llÞÞ for a
spacecraft formation reconfiguration process. In particular, according to Corollary 3.1, on the
time interval ½ta; tb�, in order to minimize the total fuel cost, we do not have to consider all
general manoeuvre sets whose spacecraft manoeuvres may start and end at arbitrary time
instants between ta and tb. Instead, it suffices to let every spacecraft manoeuvre start at ta and
end at tb and obtain the fuel optimal manoeuvre set with the conditionally optimal choice of H
and *ll.

4. FUEL OPTIMAL SPACECRAFT FORMATION RECONFIGURATION:
MULTI-AGENT OPTIMIZATION ALGORITHM ARCHITECTURE

In Section 3, we analysed the fuel optimal spacecraft formation reconfiguration problem
qualitatively. In this section, we develop an architecture for the optimization algorithm that
generates the fuel optimal manoeuvre set for spacecraft formation reconfiguration.

4.1. Multi-agent optimization algorithm architecture overview

Given the set %TTm, to minimize the total fuel cost for formation reconfiguration, our objective is
to find a conditionally optimal choice ofH and *ll and the corresponding fuel optimal manoeuvre
set. This conditional optimization problem is decomposed into a two step process. In the first
step, for any given choice of *ll 2 *LL, we find a conditionally optimal H *

*ll
such that

IT ðM* ðt;H *
*ll
; %TTm; *llÞÞ4IT ðM* ðt;H; %TTm; *llÞÞ; 8 H ð38Þ

In the second step, we focus on the minimization of the fuel cost by searching for *ll* 2 *LL such
that

IT ðM* ðt;H *
*ll *
; %TTm; *ll* ÞÞ4IT ðM* ðt;H *

*ll
; %TTm; *llÞÞ; 8 *ll 2 *LL ð39Þ
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Combining (38) and (39), we obtain

IT ðM* ðt;H *
*ll *
; %TTm; *ll* ÞÞ4IT ðM* ðt;H; %TTm; *llÞÞ ð40Þ

for all H and *ll 2 *LL. Thus, we obtain H *
*ll *

and *ll* , which are conditionally optimal with %TTm, and
M* ðt;H *

*ll *
; %TTm; *ll* Þ is the fuel optimal manoeuvre set, which accomplishes the spacecraft

formation reconfiguration with minimal total fuel cost.
To further elaborate upon the preceding discussion, consider an n to m spacecraft formation

reconfiguration process with the manoeuvre time interval ½ta; tb�. First, for the new spacecraft
formation pattern that is specified by a particular choice of *ll, spacecraft i can generate the fuel
optimal manoeuvre m*

i; jðt; ta; tb; *llÞ with the corresponding fuel cost Iðm*
i; jðt; ta; tb; *llÞÞ for

j ¼ 1; . . . ;m. With boundary conditions (7) and (8) satisfied at ta and tb, respectively, the
generation of m*

i; jðt; ta; tb; *llÞ can be accomplished via linear/nonlinear programming or calculus
of variation. In this paper, for the aforementioned optimization process, we apply the direct
solution of Euler–Lagrange equations from the theory of calculus of variation. Since each
spacecraft will only generate the fuel optimal manoeuvres for itself going to different allowable
positions in the new formation pattern, this part of computation is distributed and implemented
in parallel on different spacecraft. Next, a ‘dynamic-programming-styled’ task assignment
algorithm and a communication protocol for information exchange among all the spacecraft is
used to determine the conditionally optimal H *

*ll
. A significant advantage of this dynamic-

programming-styled task assignment algorithm is that we are guaranteed to obtain H *
*ll
without

exhaustively computing IT ðM* ðt;H; %TTm; *llÞÞ for all Pm
n different spacecraft permutations H.

Thus, with H *
*ll
for the particular choice of *ll 2 *LL, IT ðM* ðt;H *

*ll
; %TTm; *llÞÞ is given by

IT ðM* ðt;H *
*ll
; %TTm; *llÞÞ ¼

Xm
j¼1

Iðm*
h *
*llj
; j
ðt; ta; tb; *llÞÞ ð41Þ

Next, we repeat the above steps to obtain IT ðM* ðt;H *
*ll
; %TTm; *llÞÞ for different *ll 2 *LL so that we

can find *ll* , for which IT ðM* ðt;H *
*ll *
; %TTm; *ll* ÞÞ4IT ðM* ðt;H *

*ll
; %TTm; *llÞÞ; for all *ll 2 *LL. This is a

black-box problem for input *ll 2 *LL and output IT ðM* ðt;H *
*ll
; %TTm; *llÞÞ, since we have no

knowledge of the explicit relationship between *ll and IT ðM* ðt;H *
*ll
; %TTm; *llÞÞ. Thus, for the

optimization of fuel cost for formation reconfiguration with respect to *ll, we utilize genetic
algorithm (GA), which has been practically proven for its efficacy in black-box optimization.
Specifically, GA generates different gene strings such that each gene string is decoded to a
specific *ll 2 *LL. Then the fitness value for the gene string is obtained with consideration of
IT ðM* ðt;H *

*ll
; %TTm; *llÞÞ, i.e. a higher fitness value corresponds to a lower IT ðM* ðt;H *

*ll
; %TTm; *llÞÞ.

Next, genetic operations are performed on the gene strings according to their fitness values.
After several generations of genetic evolution, the best gene string will eventually converge to
the string that is decoded to *ll* . See Figure 5 for a flow chart representation of this optimization
algorithm architecture.

Note that for the above two-step conditional optimization problem, we may select to first find
the conditionally optimal *ll*

H for a given H. Next, we may determine H * and the corresponding
*ll*
H * so that IT ðM* ðt;H * ; %TTm; *ll*

H * ÞÞ4IT ðM* ðt;H; %TTm; *llÞÞ for all H and *ll. In this approach, the
search space for *ll is the same as the first approach. However, the search for *ll*

H 2 *LL has to be
repeated exhaustively Pm

n times for every H. Thus, this approach requires a significantly larger
computational effort than the first approach, for which the computational effort for the search
in H is greatly reduced by the dynamic-programming-styled task assignment algorithm.
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4.2. Fuel optimal Manoeuvre for a single spacecraft

To generate the fuel optimal manoeuvre for a single spacecraft engaged in formation
reconfiguration manoeuvre, we consider the linearized spacecraft relative motion dynamics
characterized in the fxI; yI; zIg coordinate frame. The linearized spacecraft relative motion
dynamics is typically described by the Hill’s equations [19, 20, 22, 23, 26, 27] as below

.xxðtÞ ¼ 2o ’yyðtÞ þ uxðtÞ

.yyðtÞ ¼ �2o ’xxðtÞ þ 3o2yðtÞ þ uyðtÞ

.zzðtÞ ¼ �o2zðtÞ þ uzðtÞ ð42Þ

where ðxðtÞ; yðtÞ; zðtÞÞ is the spacecraft relative motion trajectory expressed in the fxI; yI; zIg
coordinate frame and uxðtÞ, uyðtÞ, and uzðtÞ are the components of the thrust forces per unit mass
along the xI, yI, and zI axis, respectively.

Figure 5. Optimization algorithm architecture.
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If we prescribe a spacecraft relative motion trajectory ðxðtÞ; yðtÞ; zðtÞÞ in the fxI; yI; zIg
coordinate frame, then the thrust force per unit mass ðuxðtÞ; uyðtÞ; uzðtÞÞ, which enables the
spacecraft relative motion ðxðtÞ; yðtÞ; zðtÞÞ, is given by

uxðtÞ ¼ .xxðtÞ � 2o ’yyðtÞ

uyðtÞ ¼ .yyðtÞ þ 2o ’xxðtÞ � 3o2yðtÞ

uzðtÞ ¼ .zzðtÞ þ o2zðtÞ ð43Þ

For notational convenience, in the balance of this subsection, we suppress the explicit
dependence of various variables on t.

Let M be the mass of the spacecraft. Restricting consideration to a relatively short period of
time, i.e. several spacecraft orbital periods out of several years long spacecraft life time, it
follows that the mass of the spacecraft during a formation reconfiguration manoeuvre can be
taken as a constant. If ðux; uy; uzÞ is the thrust force per unit mass, the total thrust is
ðM ux;M uy;M uzÞ. The fuel consumption for a spacecraft to apply the thrust ðM ux;M uy;M uzÞ
is governed by the type of the spacecraft propulsion system on-board. Two common spacecraft
propulsion systems are the constant specific impulse propulsion system and the variable specific
impulse (VSI) propulsion system. Of these, the VSI propulsion system, such as the electric
plasma thruster, is particularly relevant to spacecraft orbit control and reconfiguration
manoeuvre. Thus, in this paper, we assume that all spacecraft engaged in formation
reconfiguration utilize the VSI propulsion system.

Let ’mm be the fuel mass consumption rate. Then, for a VSI propulsion system, ’mm is given by
[35]

’mm ¼
M2

2P
ðu2x þ u2y þ u2zÞ ð44Þ

where P is the power delivered to the propulsion system. For a time interval ½ta; tb�, the total fuel
mass consumption of a spacecraft is

R tb

ta
’mm dt. Next, let the fuel cost for spacecraft i to execute a

manoeuvre mi; jðt; ta; tb; *llÞ to relocate to the jth allowable position in the new formation pattern
that is specified by *ll be defined as the total fuel mass consumption for this manoeuvre.

Next, we use C to denote the set of all space curves ðx; y; zÞ, where x, y, and z are functions
defined on ½ta; tb� that have continuous second derivatives on ½ta; tb� and satisfy the boundary
conditions (7) and (8) at t ¼ ta and t ¼ tb, respectively. Thus, every ðx; y; zÞ 2 C is a feasible
spacecraft manoeuvre for spacecraft i to transfer to the jth allowable position in the new
formation pattern that is specified by *ll, starting at ta and ending at tb. In particular, x, y, and z
represent simplified notations for xmi; j ðt; *llÞ, ymi; j ðt; *llÞ, and zmi; j ðt; *llÞ, respectively. Now
eliminating ðux; uy; uzÞ in (44) using (43), we obtain the fuel cost for spacecraft i to execute
manoeuvre mi; jðt; ta; tb; *llÞ as follows:

Iðmi; jðt; ta; tb; *llÞÞ ¼
4

Z tb

ta

’mm dt

¼
M2

2P

Z tb

ta

ðð .xx� 2o ’yyÞ2 þ ð .yyþ 2o ’xx� 3o2yÞ2 þ ð .zzþ o2zÞ2Þ dt ð45Þ
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For notational convenience, we now define

f ðx; ’xx; .xx; y; ’yy; .yy; z; ’zz; .zzÞ ¼4 ð .xx� 2o ’yyÞ2 þ ð .yyþ 2o ’xx� 3o2yÞ2 þ ð .zzþ o2zÞ2; ðx; y; zÞ 2 C ð46Þ

Jðx; y; zÞ ¼4
Z tb

ta

f ðx; ’xx; .xx; y; ’yy; .yy; z; ’zz; .zzÞ dt; ðx; y; zÞ 2 C ð47Þ

Then, using (45)–(47), the fuel cost for spacecraft i to execute manoeuvre mi; jðt; ta; tb; *llÞ is
given by

Iðmi; jðt; ta; tb; *llÞÞ ¼
M2

2P
Jðx; y; zÞ; ðx; y; zÞ 2 C ð48Þ

To find the optimal manoeuvre m*
i; jðt; ta; tb; *llÞ for spacecraft i such that its fuel cost

Iðm*
i; jðt; ta; tb; *llÞÞ is minimal, we search for ðx* ; y* ; z* Þ in C such that Jðx* ; y* ; z* Þ is minimal.

This fuel optimization problem is addressed via the theory of calculus of variation. In particular,
using the theory of calculus of variation, we can obtain an extremum that satisfies the Euler–
Lagrange equations and boundary conditions (7) and (8) at t ¼ ta and t ¼ tb, respectively. Note
that since the set of space curves C defined above is convex, the existence and uniqueness of
minðx;y;zÞ2CJðx; y; zÞ follows from the fact that Jðx; y; zÞ in (47) is a strictly convex functional on
C [36]. Thus, it follows that the extremum yields the unique optimal solution ðx* ; y* ; z* Þ for
which Jðx* ; y* ; z* Þ is minimal.

Next, the Euler–Lagrange equations for the minimization of (47) are given by [37, 38]

@f

@q
�

d

dt

@f

@ ’qq

� �
þ

d2

dt2
@f

@ .qq

� �
¼ 0; q 2 fx; y; zg ð49Þ

where, for notational simplicity, we have suppressed the arguments of f (see (46) for details).
Now, using (46) in (49), we obtain

d4x

dt4
� 4o

d3y

dt3
� 4o2 d

2x

dt2
þ 6o3dy

dt
¼ 0

d4y

dt4
þ 4o

d3x

dt3
� 10o2 d

2y

dt2
� 6o3 dx

dt
þ 9o4y ¼ 0

d4z

dt4
þ 2o2 d

2z

dt2
þ o4z ¼ 0 ð50Þ

The general solution of the set of linear ordinary differential equations (50) is given by

xðtÞ ¼ c1 þ c2tþ c3t
2 þ c4t

3 þ c5sin ðotÞ þ c6cos ðotÞ þ c7tcos ðotÞ þ c8tsin ðotÞ

yðtÞ ¼
2c2

3o
þ

16c4

9o3

� �
þ

4c3

3o
tþ

2c4

o
t2 þ

3c7

10o
þ

c5

2

� �
cos ðotÞ þ

3c8

10o
�

c6

2

� �
sin ðotÞ

þ
c8

2
tcos ðotÞ �

c7

2
tsin ðotÞ

zðtÞ ¼ c9sin ðotÞ þ c10 cos ðotÞ þ c11tcos ðotÞ þ c12tsin ðotÞ ð51Þ

where t 2 ½ta; tb� and ci, i ¼ 1; . . . ; 12, are 12 integration constants, which can be determined
using the boundary conditions (7) and (8) at t ¼ ta and t ¼ tb, respectively. Since (50) is a
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time-invariant linear system, we can shift the time variable from t to t ¼4 t� ta in (51) to obtain
an equivalent characterization of the general solution of (50) given by

xðtÞ ¼ c1 þ c2tþ c3t2 þ c4t3 þ c5sin ðotÞ þ c6cos ðotÞ þ c7tcos ðotÞ þ c8tsin ðotÞ

yðtÞ ¼
2c2

3o
þ

16c4

9o3

� �
þ

4c3

3o
tþ

2c4

o
t2 þ

3c7

10o
þ

c5

2

� �
cos ðotÞ þ

3c8

10o
�

c6

2

� �
sin ðotÞ

þ
c8

2
tcos ðotÞ �

c7

2
tsin ðotÞ

zðtÞ ¼ c9sin ðotÞ þ c10 cos ðotÞ þ c11tcos ðotÞ þ c12tsin ðotÞ ð52Þ

where t 2 ½0;D�, with D ¼4 tb � ta.
With the general solution of (50) characterized by (52), an application of the boundary

conditions (7) and (8) at t ¼ ta (equivalently, at t ¼ 0) and t ¼ tb (equivalently, at t ¼ D),
respectively, yields a linear system of 12 algebraic equations for ci, i ¼ 1; . . . ; 12. Having
solved the linear system of 12 algebraic equations for ci, i ¼ 1; . . . ; 12, the 12 integration
constants are substituted in (52) to produce the extremum that is the unique optimal
ðx* ; y* ; z* Þ, for all ðx; y; zÞ 2 C. Thus, Jðx* ; y* ; z* Þ is minimal, i.e. Jðx* ; y* ; z* Þ5Jðx; y; zÞ
for any other ðx; y; zÞ 2 C. Now the unique fuel optimal manoeuvre m*

i; jðt; ta; tb; *llÞ ¼
ðxm*

i; j
ðt; *llÞ; ym*

i; j
ðt; *llÞ; zm*

i; j
ðt; *llÞÞ, ta4t4tb, is obtained from xm*

i; j
ðt; *llÞ ¼ x* , ym*

i; j
ðt; *llÞ ¼ y* , and

zm*
i; j
ðt; *llÞ ¼ z* , which guarantees that Iðm*

i; jðt; ta; tb; *llÞÞ5Iðmi; jðt; ta; tb; *llÞÞ for any other

mi; jðt; ta; tb; *llÞ.
Finally, with the change of variable t ¼4 t� ta and substitution of (46) and (52), the integral

of (47) yields

Jðx* ; y* ; z* Þ ¼
4

9
c23 þ

16

9o2
c24 þ

o2

10
ðc27 þ c28Þ þ 2o2ðc211 þ c212Þ

� �
Dþ

4c3c4

3
D2 þ

4c24
3

D3

þ
32c7c4

15o
�

8c8c3

15

� �
sin ðoDÞ �

32c8c4

15o
þ

8c7c3

15

� �
cos ðoDÞ �

8c8c4

5
Dsin ðoDÞ

�
8c7c4

5
Dcos ðoDÞ þ

3oc7c8
25

þ 4oc11c12

� �
cos2ðoDÞ

þ
3o
50

ðc28 � c27Þ þ 2oðc212 � c211Þ
� �

cos ðoDÞsin ðoDÞ

þ
8c7c3

15
�

3oc7c8
25

þ
32c8c4

15o
� 4oc11c12 ð53Þ

where, as elaborated above, the values of ci, i ¼ 1; . . . ; 12, correspond to the solution of the
linear system of 12 algebraic equations consistent with the boundary conditions (7) and (8) at
t ¼ ta and t ¼ tb, respectively. Finally, the value of Iðm*

i; jðt; ta; tb; *llÞÞ is given by

Iðm*
i; jðt; ta; tb; *llÞÞ ¼

M2

2P
Jðx* ; y* ; z* Þ ð54Þ

4.3. Dynamic-programming-styled multi-agent task assignment algorithm

4.3.1. Task assignment problem
We begin by considering a general task assignment problem, where m different tasks are to be
assigned to n agents, with m4n. Let the minimum cost for agent i to perform task j be denoted

G. YANG ET AL.262

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:243–283



as Ci; j . In addition, let the full decisions for all task assignments be denoted by an m dimensional
full decision vector ½d1; . . . ; dm�, where dj 2 f1; . . . ; ng, j ¼ 1; . . . ;m, and di 6¼ dj, for i 6¼ j.
Specifically, dj is the decision that agent dj performs task j. Then, the cost for decision dj is Cdj ; j.
When only j, 14j5m, decisions have been made, we denote an m dimensional intermediate
decision vector as ½d1; . . . ; dj ; 0m�j�, j ¼ 1; . . . ;m� 1. An optimal full decision vector is denoted as
½d *

1 ; . . . ; d
*
m � and satisfies

Xm
j¼1

Cd *
j ; j4

Xm
j¼1

Cdj ; j ð55Þ

for all full decision vectors ½d1; . . . ; dm�. Note that the optimal task assignment problem is a
multistage (actually, an m-stage) decision process, which can be solved efficiently using the well
established dynamic programming methodology.

Next, we assign a state variable ai to agent i, i ¼ 1; . . . ; n, where ai 2 f0; 1g. The two values of
the state variables 0 and 1 represent whether an agent is standing by for a task assignment or
whether it has been assigned to perform a certain task, respectively. Thus, an n dimensional state
vector *aaj ¼

4 ½a1; . . . ; an� denotes the state of the n-agent system at the jth decision stage,
j ¼ 0; . . . ;m. For example, *aa0 ¼ ½0; . . . ; 0� denotes the state of the n-agent system at the ‘0’ stage,
where all agents are standing by. If m ¼ n, *aan ¼ ½1; . . . ; 1� denotes the state of the n-agent system
at the final decision stage, where all agents have been assigned with certain tasks. The multistage
task assignment process begins with the initial state *aa0. At the jth stage, the jth decision (viz, dj)
is made and the intermediate decision vector is changed from ½d1; . . . ; dj�1; 0m�ðj�1Þ� to
½d1; . . . ; dj�1; dj ; 0m�j�. That is, agent dj, which was standing by, is now assigned to perform
task j and the value of adj is changed from 0 to 1. Specifically, the full state of the n-agent system
is changed from *aaj�1 to *aaj, where the djth component of *aaj�1 is changed from 0 to 1. Let *eei be the
ith row of an n� n identity matrix. Then, the transformation from *aaj�1 to *aaj with decision dj can
be performed by using an operator D as follows

*aaj ¼Dð *aaj�1; djÞ

¼4 *aaj�1 þ *eedj ð56Þ

We define the inverse operator of D as

*aaj�1 ¼D�1ð *aaj ; djÞ

¼4 *aaj � *eedj ð57Þ

Note that after the jth decision, the state of the n-agent system *aaj has j non-zero components
since each decision changes one component of ½a1; . . . ; an� from 0 to 1. Thus, there are Cj

n

possible states for the n-agent system at the jth stage, where C is the combination operator
defined as Cj

n ¼4 n!=j!ðn� jÞ! [34]. We let *aajp , p ¼ 1; . . . ;Cj
n, denote one of these possible states for

the n-agent system at the jth stage, where *aajp has j non-zero components.
Now we define Fjð *aajp Þ as the minimum cost for the n-agent system to move from *aa0 to a

possible state *aajp , p ¼ 1; . . . ;Cj
n, at the jth stage according to some intermediate decision vector

½d1p ; . . . ; djp ; 0m�j� for the first j decisions, i.e.

Fjð *aajpÞ ¼
4

min
½d1p ;...;djp ;0m�j �

Xj

l¼1

Cdlp ;l ð58Þ
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where ½d1p ; . . . ; djp ; 0m�j � is any feasible intermediate decision vector that satisfies

Dð. . .DðDð *aa0; d1p Þ; d2pÞ; . . . ; djp Þ ¼
Xj

l¼1

*eedlp

¼ *aajp ð59Þ

Finally, since there are Cm
n possible states at the mth decision stage, we have

Xm
j¼1

Cd *
j
; j ¼ min

p¼1;...;Cm
n

Fmð *aamp
Þ ð60Þ

where Fmð *aamp
Þ denotes the minimum cost for the n-agent system to move from *aa0 to a possible

state *aamp
, p ¼ 1; . . . ;Cm

n , at the mth stage according to some full decision vector ½d1p ; . . . ; dmp
�.

Note that in the case where m ¼ n, Cm
n ¼ Cn

n ¼ 1, i.e., there is only one possible state at the nth
decision stage, which is *aan. Thus, we have,

Xn
j¼1

Cd *
j
; j ¼ Fnð *aanÞ ð61Þ

At the jth decision stage, for a particular *aajp , we assume its j non-zero components are
k1p ; . . . ; kjp components. Thus, the set of allowable values for decision djp that brings the state to
this *aajp at the jth stage is Kjp ¼

4 fk1p ; . . . ; kjpg, since k1p ; . . . ; kjp are the only non-zero components
in the state vector so far. Now, applying the Principle of Optimality [37–39], we obtain the
following recurrence relation for Fjð *aajp Þ:

Fjð *aajp Þ ¼ min
djp2Kjp

fCdjp ; j þ Fj�1ðD�1ð *aajp ; djp ÞÞg; p ¼ 1; . . . ;Cj
n ð62Þ

Next, we can construct a dynamic-programming-styled task assignment algorithm for all
agents since each stage of this algorithm is based on the recurrence relation (62). In order to start
the algorithm, each agent must generate the costs for itself to perform the m different tasks in
advance. For the first stage, F1ð *aa1p Þ ¼ Cp;1, p ¼ 1; . . . ; n, since C1

n ¼ n. At the jth stage, for every
possible state *aajp , agent djp , djp 2 Kjp , needs to take the sum of Cdjp ; j þ Fj�1ðD�1ð *aajp ; djpÞÞ. Note
that Cdjp ; j is the cost of agent djp to perform task j, which is known to agent djp . Furthermore,
Fj�1ðD�1ð *aajp ; djp ÞÞ is the result obtained from the last stage for some state D�1ð *aajp ; djp Þ, which has
j � 1 non-zero components and whose djp component is zero. Then the value of Cdjp ; jþ
Fj�1ðD�1ð *aajp ; djp ÞÞ is communicated to the other agents for comparison with
Cd 0jp ; j

þ Fj�1ðD�1ð *aajp ; d
0
jp
ÞÞ, d 0

jp
2 Kjp , d 0

jp
6¼ djp . In addition, the minimum value of Cdjp ; jþ

Fj�1ðD�1ð *aajp ; djp ÞÞ, djp 2 Kjp , is taken as Fjð *aajp Þ and communicated to all agents for use at the
next stage. After the mth stage, Fmð *aamp

Þ, p ¼ 1; . . . ;Cm
n , is known to every agent. Thus, the

agents can easily obtain the value of
Pm

j¼1 Cd *
j
; j and the corresponding optimal full decision

vector ½d *
1 ; . . . ; d

*
m � by choosing the minimum value of Fmð *aamp

Þ among all *aamp
, p ¼ 1; . . . ;Cm

n .
In order to show the efficacy of this dynamic-programming-styled task assignment algorithm,

we consider the computational effort for this algorithm. At the jth stage, where 24j4m, a
possible state *aajp can be reached by a total of j allowable decision values that belong to the set
Kjp . Thus, in order to obtain Fjð *aajp Þ for a particular *aajp , the agents need to do j additions to
obtain Cdjp ; j þ Fj�1ðD�1ð *aajp ; djpÞÞ for all j allowable values of djp 2 Kjp so that they can compare
these values and find the minimum value of Cdjp ; j þ Fj�1ðD�1ð *aajp ; djp ÞÞ. For all C

j
n possible states

at the jth stage, the agents have to do j Cj
n additions. Since no calculation is needed for the first
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stage, for all m stages, the total effort will be
Pm

j¼2 j C
j
n additions. Note that

Xm
j¼2

j Cj
n ¼

Xm
j¼2

j
n!

ðn� jÞ! j!

¼
Xm
j¼2

ðn� 1Þ! n
ðn� jÞ! ðj � 1Þ!

¼ n
Xm
j¼2

Cj�1
n�1 ð63Þ

For an n-agent-m-task problem, m4n, we denote the total number of additions that are needed
for this algorithm as Eðn;mÞ ¼4 n

Pm
j¼2 C

j�1
n�1. Specifically, for an n-agent-n-task problem, where

m ¼ n, the total number of additions is

Eðn; nÞ ¼ n
Xn
j¼2

Cj�1
n�1

¼ nð2n�1 � 1Þ ð64Þ

In contrast to the above, the exhaustive evaluation of
Pm

j¼1 Cdj ; j for all P
m
n different agent-

task assignments requires at least #EEðn;mÞ ¼4 Pm
n additions, if we assume that for a particular

½d1; . . . ; dm� the evaluation of
Pm

j¼1 Cdj ; j requires only one addition. Thus, for a 10-agent-10-task
problem, Eð10; 10Þ � 5:1� 103 while #EEð10; 10Þ � 3:6� 106, and for a 15-agent-15-task
problem, Eð15; 15Þ � 2:45� 105 while #EEð15; 15Þ � 1:3� 1012.

Remark 4.1
A variety of alternative schemes exists to solve the task assignment problem. For example, linear
programming (LP) techniques have been adapted to address the task assignment problem.
Specifically, the task assignment problem is frequently interpreted and solved as a
transportation problem [40, 41]. In addition, the Hungarian method is also used to address
the task assignment problem [40]. The LP formulations of the task assignment problem can be
characterized as efficient, low computational cost solutions that necessitate an iterative,
centralized implementation. In contrast, the proposed dynamic-programming-styled task
assignment algorithm is sequential and decentralized in nature, which requires only m stages
for an n-agent-m-task problem. Frequently, auction-based algorithms are also used for the task
assignment problem [31]. Unfortunately, task assignment using an auction-based algorithm may
not even yield the optimal solution. In addition, the auction-based algorithms for the task
assignment problem require a central computer processor, which accepts and evaluates bids and
assigns tasks [31]. The dynamic-programming-styled task assignment algorithm of this paper
eliminates the need for a centralized computer since it uses a distributed computational
architecture along with a communication protocol (see Section 4.3.2) to generate the optimal
task assignment policy.

Remark 4.2
Traditionally, the dynamic-programming-based solution techniques for multistage optimization
problems have been known to suffer from the curse of dimensionality [39]. Specifically, a
dynamic programming formulation of any multistage optimization problem involving several
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state variables explodes in dimension when each state variable has large number of
discretization levels. Fortunately, the task assignment problem considered above gives rise to
state variables that have binary discretization levels (0 and 1). This results in a considerably
simple problem structure, which is well suited for a dynamic-programming-styled solution
methodology. Unfortunately, however, the computational cost of the proposed algorithm grows
rapidly with the number of agents, thus making it potentially infeasible for task assignment with
large number of agents.

4.3.2. Formation reconfiguration using multi-agent task assignment
Returning to our n to m spacecraft formation reconfiguration problem, m4n, n spacecraft are
the n agents and manoeuvring to m allowable positions in the new formation pattern are the m
different tasks. Letting spacecraft i manoeuvre to the jth allowable position corresponds to
assigning task j to agent i. The cost for agent i to perform task j is the minimum fuel cost for
spacecraft i to manoeuvre from its thrust-free trajectory in the original formation to the jth
allowable position in the new formation pattern, i.e.

Ci; j ¼ Iðm*
i; jðt; ta; tb; *llÞÞ ð65Þ

Then, for the new formation pattern that is specified by *ll, the optimal full decision vector for the
corresponding n-agent-m-task problem is the conditionally optimal choice of H with the
specified *ll, i.e.

H *
*ll
¼ ½d *

1 ; . . . ; d
*
m � ð66Þ

To apply the dynamic-programming-styled task assignment algorithm to an n to m spacecraft
formation reconfiguration process, we propose a communication protocol among all the
spacecraft such that the algorithm can be implemented by spacecraft communication and the
computational effort is distributed on each spacecraft equally.

Before the algorithm starts, each spacecraft generates the minimum fuel costs for itself to
manoeuvre to m different allowable positions in the new formation pattern. Specifically,
spacecraft i obtains in advance all the values of Iðm*

i; jðt; ta; tb; *llÞÞ, j ¼ 1; . . . ;m, using the
framework of Subsection 4.2.

In order to describe the dynamic-programming-styled task assignment algorithm and the
proposed communication protocol in an illustrative manner, we consider the following example.
A 4 spacecraft formation is required to reconfigure to a new formation pattern, where only 3
spacecraft are needed. Assume that the minimum fuel costs for spacecraft i, i ¼ 1; . . . ; 4, to
manoeuvre to the jth, j ¼ 1; 2; 3, allowable positions in the new formation pattern are known
and are as given in Table I. Note that initially, each spacecraft only has the information of the
corresponding row of data.

At the first stage, spacecraft i, i ¼ 1; . . . ; 4, broadcasts F1ð *aa1i Þ ¼ Ci;1, the corresponding
intermediate decision vector ½i; 0; 0�, and the corresponding state vector *aa1i , whose ith
component is 1. This set of data is obtained by all participating spacecraft (see Table II).

At the second stage, spacecraft i, i ¼ 1; . . . ; 4, checks the state vector *aa1p , p ¼ 1; . . . ; 4. If the
ith component of a state vector *aa1p is still zero, spacecraft i calculates Ci;2 þ F1ð *aa1pÞ, updates the
corresponding intermediate decision vector by adding d2 ¼ i, and updates the corresponding
state vector *aa1p by changing its ith component ai from 0 to 1. Each spacecraft stores its own set
of data temporarily (see Table III).
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Next, spacecraft 1 broadcasts C1;2 þ F1ð *aa12Þ ¼ 11:3 with the corresponding state vector
½1; 1; 0; 0�, C1;2 þ F1ð *aa13 Þ ¼ 9:7 with the corresponding state vector ½1; 0; 1; 0�, and C1;2þ
F1ð *aa14 Þ ¼ 11:4 with the corresponding state vector ½1; 0; 0; 1�. When the other spacecraft receive
this data, each of them checks whether there is a match for some state vectors with its own set of
temporarily stored data. If there is a match for a particular state vector, a comparison is made
between the corresponding values of Ci;2 þ F1ð *aa1pÞ, where one of these is from the spacecraft’s
own set of temporarily stored data and the other is received from spacecraft 1. If the value from
the spacecraft’s own set of temporarily stored data is greater than or equal to the value that is
received from spacecraft 1, the spacecraft deletes the stored value of Ci;2 þ F1ð *aa1p Þ and the

Table I. Formation reconfiguration fuel cost data.

Ci;j ¼ Iðm*
i;jðt; ta; tb; *llÞÞ j ¼ 1 j ¼ 2 j ¼ 3

i ¼ 1 6.1 3.2 2.2
i ¼ 2 8.1 5.8 3.0
i ¼ 3 6.5 7.4 8.1
i ¼ 4 8.2 8.9 7.0

Table II. Data broadcast at stage 1.

Broadcast F1ð *aa1p Þ ½d1; 0; 0� *aa1p

Spacecraft 1 F1ð *aa11 Þ ¼ C1;1 ¼ 6:1 [1,0,0] *aa11 ¼ ½1; 0; 0; 0�
Spacecraft 2 F1ð *aa12 Þ ¼ C2;1 ¼ 8:1 [2,0,0] *aa12 ¼ ½0; 1; 0; 0�
Spacecraft 3 F1ð *aa13 Þ ¼ C3;1 ¼ 6:5 [3,0,0] *aa13 ¼ ½0; 0; 1; 0�
Spacecraft 4 F1ð *aa14 Þ ¼ C4;1 ¼ 8:2 [4,0,0] *aa14 ¼ ½0; 0; 0; 1�

Table III. Intermediate data set at stage 2.

Ci;2 þ F1ð *aa1p Þ ½d1; d2; 0� Dð *aa1p ; d2Þ

Spacecraft 1 C1;2 þ F1ð *aa12 Þ ¼ 11:3 [2, 1, 0] [1,1,0,0]
C1;2 þ F1ð *aa13 Þ ¼ 9:7 [3, 1, 0] [1,0,1,0]
C1;2 þ F1ð *aa14 Þ ¼ 11:4 [4, 1, 0] [1,0,0,1]

Spacecraft 2 C2;2 þ F1ð *aa11 Þ ¼ 11:9 [1, 2, 0] [1,1,0,0]
C2;2 þ F1ð *aa13 Þ ¼ 12:3 [3, 2, 0] [0,1,1,0]
C2;2 þ F1ð *aa14 Þ ¼ 14:0 [4, 2, 0] [0,1,0,1]

Spacecraft 3 C3;2 þ F1ð *aa11 Þ ¼ 13:5 [1, 3, 0] [1,0,1,0]
C3;2 þ F1ð *aa12 Þ ¼ 15:5 [2, 3, 0] [0,1,1,0]
C3;2 þ F1ð *aa14 Þ ¼ 15:6 [4, 3, 0] [0,0,1,1]

Spacecraft 4 C4;2 þ F1ð *aa11 Þ ¼ 15:0 [1, 4, 0] [1,0,0,1]
C4;2 þ F1ð *aa12 Þ ¼ 17:0 [2, 4, 0] [0,1,0,1]
C4;2 þ F1ð *aa13 Þ ¼ 15:4 [3, 4, 0] [0,0,1,1]
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corresponding intermediate decision vector and the state vector; otherwise the corresponding
data in spacecraft’s own set of temporarily stored data is retained. For example, spacecraft 2
deletes C2;2 þ F1ð *aa11Þ, the corresponding intermediate decision vector, and the state vector from
its own set of temporarily stored data since C2;2 þ F1ð *aa11 Þ is greater than C1;2 þ F1ð *aa12Þ, which
has the same corresponding state vector ½1; 1; 0; 0�. Similarly, spacecraft 3 deletes C3;2 þ F1ð *aa11Þ,
its corresponding intermediate decision vector, and the state vector and spacecraft 4 deletes
C4;2 þ F1ð *aa11 Þ, its corresponding intermediate decision vector, and the state vector from their
own set of temporarily stored data. Then, spacecraft 2 broadcasts its remaining data and the
same comparison is carried out on the other spacecraft, including spacecraft 1, when they
receive the data from spacecraft 2. This process continues until spacecraft 4 has broadcast and
comparison for data has been made on the other spacecraft. If one spacecraft has deleted all the
stored data before its turn to broadcast, it simply skips the broadcast. After spacecraft 4
broadcasts, the final remaining values on the spacecraft are F2ð *aa2pÞ, p ¼ 1; . . . ; 6, since C2

4 ¼ 6.
The resulting data set is given in Table IV. At the end of this stage, F2ð *aa2p Þ, p ¼ 1; . . . ; 6, together
with the corresponding intermediate decision vector and the state vector, are broadcast by its
holder so that this set of data is obtained by all the other spacecraft.

At the third stage, spacecraft i, i ¼ 1; . . . ; 4, checks the state vector *aa2p , p ¼ 1; . . . ; 6. If the ith
component of a state vector *aa2p is still zero, spacecraft i calculates Ci;3 þ F2ð *aa2p Þ, updates the
corresponding intermediate decision vector by adding d3 ¼ i, and also updates the correspond-
ing state vector *aa2p by changing its ith component ai from 0 to 1. Each spacecraft stores these
data temporarily (see Table V).

Now beginning with spacecraft 1, every spacecraft broadcasts in turn while the same
comparison operation as described for the second stage is carried on the other spacecraft.
Finally, the remaining data are shown in Table VI and they are broadcasted from their holder to
all the other spacecraft.

After the third stage, which is the last one for this example since m ¼ 3, every spacecraft has
obtained all F3ð *aa3pÞ, p ¼ 1; . . . ; 4 since C3

4 ¼ 4, and the corresponding full decision vectors.
Clearly, they choose [3, 1, 2] as the optimal full decision vector since the corresponding

Table IV. Final data set at stage 2.

F2ð *aa2p Þ ½d1; d2; 0� *aa2p

Spacecraft 1 F2ð *aa21 Þ ¼ C1;2 þ F1ð *aa12 Þ ¼ 11:3 [2, 1, 0] *aa21 ¼ ½1; 1; 0; 0�
F2ð *aa22 Þ ¼ C1;2 þ F1ð *aa13 Þ ¼ 9:7 [3, 1, 0] *aa22 ¼ ½1; 0; 1; 0�
F2ð *aa23 Þ ¼ C1;2 þ F1ð *aa14 Þ ¼ 11:4 [4, 1, 0] *aa23 ¼ ½1; 0; 0; 1�

Spacecraft 2 } } }
F2ð *aa24 Þ ¼ C2;2 þ F1ð *aa13 Þ ¼ 12:3 [3, 2, 0] *aa24 ¼ ½0; 1; 1; 0�
F2ð *aa25 Þ ¼ C2;2 þ F1ð *aa14 Þ ¼ 14:0 [4, 2, 0] *aa25 ¼ ½0; 1; 0; 1�

Spacecraft 3 } } }
} } }
} } }

Spacecraft 4 } } }
} } }

F2ð *aa26 Þ ¼ C4;2 þ F1ð *aa13 Þ ¼ 15:4 [3, 4, 0] *aa26 ¼ ½0; 0; 1; 1�
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F3ð *aa31 Þ ¼ 12:7 is the minimum total fuel cost. Thus, by communicating with each other, all the
spacecraft can reach an agreement for the optimal decision that spacecraft 3 manoeuvres to the
1st allowable position, spacecraft 1 manoeuvres to the 2nd allowable position, and spacecraft 2
manoeuvres to the 3rd allowable position in the new formation pattern while spacecraft 4
remains in its thrust-free trajectory in the original formation. If the new formation pattern is
specified by *ll, then H *

*ll
¼ ½3; 1; 2�. Finally, the total fuel cost for IT ðM* ðt;H *

*ll
; %TTm; *llÞÞ is

IT ðM* ðt;H *
*ll
; %TTm; *llÞÞ ¼ 12:7.

Table V. Intermediate datat set at stage 3.

Ci;3 þ F2ð *aa2p Þ ½d1; d2; d3� Dð *aa2p ; d3Þ

Spacecraft 1 C1;3 þ F2ð *aa24 Þ ¼ 14:5 [3, 2, 1] [1,1,1,0]
C1;3 þ F2ð *aa25 Þ ¼ 16:2 [4, 2, 1] [1,1,0,1]
C1;3 þ F2ð *aa26 Þ ¼ 17:6 [3, 4, 1] [1,0,1,1]

Spacecraft 2 C2;3 þ F2ð *aa22 Þ ¼ 12:7 [3, 1, 2] [1,1,1,0]
C2;3 þ F2ð *aa23 Þ ¼ 14:4 [4, 1, 2] [1,1,0,1]
C2;3 þ F2ð *aa26 Þ ¼ 18:4 [3, 4, 2] [0,1,1,1]

Spacecraft 3 C3;3 þ F2ð *aa21 Þ ¼ 19:4 [2, 1, 3] [1,1,1,0]
C3;3 þ F2ð *aa23 Þ ¼ 19:5 [4, 1, 3] [1,0,1,1]
C3;3 þ F2ð *aa25 Þ ¼ 22:1 [4, 2, 3] [0,1,1,1]

Spacecraft 4 C4;3 þ F2ð *aa21 Þ ¼ 18:3 [2, 1, 4] [1,1,0,1]
C4;3 þ F2ð *aa22 Þ ¼ 16:7 [3, 1, 4] [1,0,1,1]
C4;3 þ F2ð *aa24 Þ ¼ 19:3 [3, 2, 4] [0,1,1,1]

Table VI. Final data set at stage 3.

F3ð *aa3p Þ ½d1; d2; d3� *aa3p

Spacecraft 1 } } }
} } }
} } }

Spacecraft 2 F3ð *aa31 Þ ¼ C2;3 þ F2ð *aa22 Þ ¼ 12:7 [3, 1, 2] *aa31 ¼ ½1; 1; 1; 0�
F3ð *aa32 Þ ¼ C2;3 þ F2ð *aa23 Þ ¼ 14:4 [4, 1, 2] *aa32 ¼ ½1; 1; 0; 1�
F3ð *aa33 Þ ¼ C2;3 þ F2ð *aa26 Þ ¼ 18:4 [3, 4, 2] *aa33 ¼ ½0; 1; 1; 1�

Spacecraft 3 } } }
} } }
} } }

Spacecraft 4 } } }
F3ð *aa34 Þ ¼ C4;3 þ F2ð *aa22 Þ ¼ 16:7 [3, 1, 4] *aa34 ¼ ½1; 0; 1; 1�

} } }
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Remark 4.3
In the spirit of Morton et al. [31], the minimization of the total fuel cost for formation
reconfiguration subject to an equalized fuel use by the spacecraft in formation can be
accomplished by modifying Ci; j , i ¼ 1; . . . ; n and j ¼ 1; . . . ;m, in (65) to include a factor that
weighs the remaining fuel on-board of the spacecraft Si, i ¼ 1; . . . ; n.

Remark 4.4
The aforementioned communication protocol is characterized by a distributed implementation
of the assignment algorithm and may necessitate a large amount of data communication
throughout the decision process. Generally, for an n-agent-n-task assignment problem, there are
at most (i.e., worst case) ðnþ 2Þ2n�1 floating-point data strings and ðnþ 2Þ2n�1 integer data
strings to be communicated among agents. In an alternative communication strategy, each
agent can broadcast its own initial data set to all the other agents so that all agents obtain the
full set of initial data (i.e. Table I). Next, all agents may execute the assignment algorithm of this
subsection in parallel and independently. At the successful termination of the algorithm, all
agents broadcast and cross check their results. The overall computational requirement of this
implementation is n times larger (thus, potentially, the total computation time may be n times
longer) than that of the aforementioned distributed implementation. However, this commu-
nication strategy significantly reduces the total amount of data communication to about n2 þ n
floating-point data strings and n integer data strings.

4.4. Genetic algorithm

Finally, we address the problem of the search for optimal *ll* 2 *LL such that
IT ðM* ðt;H *

*ll *
; %TTm; *ll* ÞÞ is smaller than (or at worst equal to) IT ðM* ðt;H *

*ll
; %TTm; *llÞÞ, which results

from any other choice of *ll 2 *LL. Unfortunately, an explicit relationship between the input *ll and
the output IT ðM* ðt;H *

*ll
; %TTm; *llÞÞ is unknown for this optimization problem. This eliminates the

possibility of addressing this problem using the calculus-based optimization techniques, which
rely on the existence of the derivative of IT ðM* ðt;H *

*ll
; %TTm; *llÞÞ with respect to *ll.

Genetic algorithm (GA) has been widely proven for its efficacy in black-box optimization [42–
46]. Thus, in this paper, we adopt GA to search for *ll* . We briefly note that GA is a search
algorithm that uses random selection as a tool to guide a highly exploitative search through a
coding of the parameter space. However, we emphasize that in GA randomized search does not
necessarily imply directionless search. Specifically, GA is directed by the evolutionary rule of the
nature in its search for the optimal. In the sequel, we briefly review the basic aspects of GA
utilized in this paper, viz. binary coding, Roulette Wheel selection, two-point crossover, jump-
creep mutation, elitism, and population re-initialization. See References [42–44] for a detailed
exposition of GA.

In this paper, Li, the domain of li, i ¼ 1; . . . ; k, is assumed to be a continuous bounded
interval. We use a 32-bit binary coding to discretize Li to ensure sufficient precision. Thus, a
gene string of total k� 32-bit length is the unique binary code representation for a particular
*ll ¼ ½l1; . . . ; lk� 2 *LL. The k� 32-bit gene string length is also called the parameter length or the
chromosome length.

Let N denote the population size, which is the total number of gene strings in one generation.
Then, we generate the first generation of N gene strings randomly such that their decoded
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representations of *ll are uniformly distributed in *LL. Next, starting from the first generation of
gene strings, GA continues the random selection of gene strings such that the gene strings of
higher fitness values have a greater probability of selection. The selected gene strings produce
new gene strings such that the good genetic information, which is likely to provide higher fitness
values, is passed to the next generation whereas the bad genetic information, which causes lower
fitness values, is filtered out after several generations of gene selection. Based on the survival-of-
the-fittest mechanism, this evolutionary process drives the whole population to converge to the
gene strings of high fitness values.

Specifically, to select good gene strings from a current generation, we define the fitness value
gðxiÞ of a k� 32-bit gene string xi, i ¼ 1; . . . ;N, as

gðxiÞ ¼
4 �IT ðM* ðt;H *

*lli
; %TTm; *lliÞÞ; i ¼ 1; . . . ;N ð67Þ

where xi is a k� 32-bit coded representation of *lli. This definition ensures that a higher fitness
value corresponds to a lower IT ðM* ðt;H *

*ll
; %TTm; *ll; ÞÞ.

Next, a Roulette Wheel selection scheme is used for selecting the parent gene strings from a
current generation of gene strings. In particular, for one generation of gene strings, let gmax and
gmin represent the maximum and minimum fitness values, respectively. Next, define

Gi ¼
4
gðxiÞ � gmin þ 0:01ðgmax � gminÞ ð68Þ

In addition, let R0 ¼4 0 and using (68) define

Ri ¼
4
Xi

j¼1

Gj ; i ¼ 1; . . . ;N ð69Þ

Note that the length of the interval ½Rði�1Þ;Ri�, i ¼ 1; . . . ;N, is linearly dependent on the fitness
value gðxiÞ, i.e. a greater gðxiÞ corresponds to a larger interval ½Rði�1Þ;Ri�. Next, we generate a
number uniformly at random in the range ð0;RNÞ and if it falls into the range ½Rði�1Þ;RiÞ then we
select xi as a parent.

Suppose we have obtained two parent gene strings, then a two-point crossover happens when
p1 > pc, where p1 is a randomly generated number according to uniform distribution on ½0; 1�
and pc 2 ½0; 1� is computed adaptively using [47]

pc ¼

gmax � gðx0iÞ
gmax � %gg

; %gg4gðx0iÞ

1; gðx0iÞ5%gg

8><
>: ð70Þ

where gðx0iÞ is the better fitness value from the two parent strings and %gg is the average fitness
value for the whole generation. In the crossover operation, two integers l1 and l2, which are
called crossover positions, are selected uniformly at random from f1; . . . ; k� 32g. The bits
between the two selected crossover positions are exchanged between the two parent strings to
generate two new offsprings.

The mutation operation follows crossover if p2 > pm, where p2 is a randomly generated
number according to uniform distribution on ½0; 1� and pm 2 ½0; 1� is computed

MULTI AGENT OPTIMIZATION 271

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:243–283



adaptively using [47]

pm ¼

gmax � gðxiÞ
gmax � %gg

; %gg4gðxiÞ

1; gðxiÞ5%gg

8><
>: ð71Þ

where gðxiÞ is the fitness value of gene string xi and %gg is the average fitness value for the whole
generation. First, in jump mutation a bit is chosen uniformly at random from f1; . . . ; k� 32g
and its state is changed from 0 to 1 or vice versa. Next, in creep mutation, we perturb *ll
corresponding to a gene string by a small amount d*ll such that ð*llþ d*llÞ 2 *LL, and then code
ð*llþ d*llÞ to a new gene string. This bit-wise jump mutation followed by creep mutation has
showed satisfactory result in our simulation.

In each generation, we leave the gene string having the best fitness value unchanged and
propagate it to the next generation. This operation, which is termed as elitism, guarantees non-
decreasing best fitness value in successive generations.

To ensure fast monotone increase of the best fitness value, we use the population re-
initialization when the search is considered to be trapped in a local minimum. Specifically, the
best fitness value of each generation is recorded, and the standard deviation (s) of the best
fitness value of the latest s generations, sðsÞ, is used as the criterion for whether or not GA
search is trapped in a local minimum. We choose two positive integers s1 and s2, s15s2, and a
small positive real number e. If sðs1Þ5e, we reinitialize the population randomly in the
neighborhood of the current best individual to accelerate the GA search. If sðs2Þ5e, we consider
the GA search to be trapped in a local minimum and reinitialize the gene strings randomly in the
whole search space *LL while the gene string with the best fitness value is kept. If the population
has been reinitialized in the whole search space for several times while there is no further
improvement in the best fitness value among the population, we consider the highest fitness
value has been reached. Then, the decoded value of best gene string, which has the highest
fitness value, is considered to be *ll* .

5. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we provide two illustrative numerical examples to demonstrate the proposed fuel
optimal multiple spacecraft formation reconfiguration framework. The problem data for
simulating the fuel optimal multiple spacecraft formation reconfiguration algorithm is adopted
from Reference [9]. Specifically, each spacecraft in the initial formation is assumed to have an
equal mass M ¼ 77 kg and a total power input P ¼ 100W for its VSI propulsion system, which
is assumed to have 10 percent efficiency. An imaginary leader spacecraft is assumed to be in a
Keplerian circular Earth orbit with radius 7178 km, which corresponds to an orbital period
TI ¼ 1:681 h. For each numerical example, the length of the formation reconfiguration
manoeuvre time interval ½ta; tb� is assumed to be TI, i.e. tb ¼ ta þ TI. Finally, for GA-based
parameter optimization, we used the population size N ¼ 50.

Example 5.1
In this example, we assume that initially one spacecraft is coasting near by a cluster of 5
spacecraft as shown in Figure 6(a). The initial spacecraft formation pattern consists of three
primary formation orbits with the initial thrust free periodic trajectories of spacecraft i ¼
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1; . . . ; 6 given by

xSi ðtÞ ¼ �2
vy0
o

cos ðoðt� taÞ þ yþ biÞ þ XC

ySi ðtÞ ¼
vy0
o

sin ðoðt� taÞ þ yþ biÞ

zSi ðtÞ ¼ z0 cos ðoðt� taÞ þ yþ biÞ þ
vz0
o

sin ðoðt� taÞ þ yþ biÞ ð72Þ

where o ¼ 1:038� 10�3 rad=s is the orbital angular velocity of the imaginary space-
craft and y ¼ p=8. In particular, spacecraft 1, 2, and 3 are distributed on the primary
formation orbit specified by (72) with ðXC; vy0 ; vz0 ; z0Þ ¼ ð0;�150om=s;�150om=s; 0Þ.
Furthermore, for spacecraft 1, 2, and 3 we are given b1 ¼ 0, b2 ¼ 2p=3, and
b3 ¼ 4p=3, respectively. Similarly, spacecraft 4 and 5 are distributed on the primary
formation orbit specified by (72) with ðXC; vy0 ; vz0 ; z0Þ ¼ ð0;�300om=s;�300om=s; 0Þ.
Furthermore, for spacecraft 4 and 5 we are given b4 ¼ 0 and b5 ¼ 2p=3, res-
pectively. Finally, spacecraft 6, which is coasting near by the cluster of 5 spacecraft,
is on the primary formation orbit specified by (72) with ðXC; vy0 ; vz0 ; z0Þ ¼ ð�1000 m; 0; 0; 0Þ
and b6 ¼ 0, which reduces to a point at ð�1000 m; 0; 0Þ in the fxI; yI; zIg coordinate
frame.

Next, the 6 spacecraft are required to combine into one cluster so that a Y-shaped formation
pattern can be formed as shown in Figure 6(b), where XC is yet to be determined. Specifically,
the allowable positions in the new formation pattern are distributed on two primary formation

Figure 6. (a) Formation pattern at ta; (b) desired formation pattern: Example 1 ($ denotes the imaginary
leader spacecraft).
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orbits specified by

xPi
ðtÞ ¼ � 2

vy0
o

cos ðoðt� tbÞ þ yP þ biÞ þ XC

yPi
ðtÞ ¼

vy0
o

sin ðoðt� tbÞ þ yP þ biÞ

zPi
ðtÞ ¼ z0 cos ðoðt� tbÞ þ yP þ biÞ þ

vz0
o

sin ðoðt� tbÞ þ yP þ biÞ ð73Þ

In particular, the allowable positions 1, 2, and 3 in the new formation pattern are dis-
tributed on the primary formation orbit specified by (73) with ðXC; vy0 ; vz0 ; z0Þ ¼
ðXC;�150om=s;�150om=s; 0Þ. Furthermore, for the allowable positions 1, 2, and 3 in the
new formation pattern b1 ¼ 0, b2 ¼ 2p=3, and b3 ¼ 4p=3, respectively. Similarly, the allowable
positions 4, 5, and 6 in the new formation pattern are distributed on the primary formation orbit
specified by (73) with ðXC; vy0 ; vz0 ; z0Þ ¼ ðXC;�300om=s;�300om=s; 0Þ. Furthermore, for the
allowable positions 4, 5, and 6 in the new formation pattern b4 ¼ 0, b5 ¼ 2p=3, and b6 ¼ 4p=3,
respectively. Note that in (73) XC and yP are allowed to be selected freely from ½�1000; 1000�m
and ½0; 2p=3� rad, respectively.

The optimization algorithm described in Section 4 yields X *
C ¼ �182:212 m and y*

P ¼
0:423 rad for the new formation pattern. Note that the value of X *

C indicates that the center of
the initial cluster of 5 spacecraft moves from the origin of the fxI; yI; zIg coordinate frame,
which is the location of the imaginary leader spacecraft, closer to the initial location of
spacecraft 6 so as to form the new formation pattern at an intermediate location. Thus, the fuel
burden of spacecraft 6 is shared by the other 5 spacecraft even as the total fuel consumption is
minimized. The fuel cost for spacecraft Si, i ¼ 1; . . . ; 6, to relocate to the allowable location Pj,
j ¼ 1; . . . ; 6, in the new formation pattern specified by X *

C and y*
P is given in Table VII. The

dynamic-programming-styled task assignment algorithm yields H * ¼ ½1; 2; 6; 4; 5; 3� to be the
optimal spacecraft permutation in the new formation pattern specified by X *

C and y*
P . It is

interesting to observe that the fuel optimal multiple spacecraft formation reconfiguration
algorithm relocates spacecraft 3, which was initially on the inner primary formation orbit, to the
6th allowable position in the new formation pattern, which is on the outer primary formation
orbit. In addition, spacecraft 6 joins the spacecraft cluster at the 3rd allowable position in the
new formation pattern, which is on the inner primary formation orbit, instead of relocating to a
vacant position in the initial formation pattern, which was on the outer primary formation
orbit. Figure 7 gives the fuel optimal spacecraft formation reconfiguration trajectories for all the
6 spacecraft. Furthermore, Figure 8 provides the thrust histories for all the 6 spacecraft. Finally,
the total fuel mass consumed by each spacecraft is listed in Table VIII.

Table VII. Formation reconfiguration fuel cost data: Example 1 (unit: 10�3 kg).

Iðm*
i; jðt; ta; tb; *ll

* ÞÞ j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4 j ¼ 5 j ¼ 6

i ¼ 1 0.0896 9.2394 8.4961 3.5600 21.7365 19.7880
i ¼ 2 10.1422 0.0875 9.2134 23.1259 2.8933 20.6833
i ¼ 3 9.5552 8.4114 0.1051 22.4091 19.9984 2.9238
i ¼ 4 2.9218 21.9044 20.3924 0.0933 37.9353 34.4493
i ¼ 5 22.8674 3.4408 21.6673 39.0655 0.0892 36.0802
i ¼ 6 3.5094 6.2365 4.8546 11.4744 16.8056 13.5798
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Figure 7. Relative position. (a) xI, (b) yI, (c) zI: Example 1.
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Figure 8. Control input. (a) ux, (b) uy, (c) uz: Example 1.
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Example 5.2
In this example, we assume that initially 6 spacecraft are distributed on two concentric primary
formation orbits as shown in Figure 9(a). The initial spacecraft formation consists of two
primary formation orbits with the initial thrust free periodic trajectories of spacecraft Si,
i ¼ 1; . . . ; 6, given by (72), with y ¼ p. In particular, spacecraft 1, 2, and 3 are distributed on the
primary formation orbit specified by (72) with ðXC; vy0 ; vz0 ; z0Þ ¼ ð0;�150om=s; 0; 0Þ. Further-
more, for spacecraft 1, 2, and 3 we are given b1 ¼ 0, b2 ¼ 2p=3, and b3 ¼ 4p=3, respectively.
Similarly, spacecraft 4, 5, and 6 are distributed on the primary formation orbit specified by (72)
with ðXC; vy0 ; vz0 ; z0Þ ¼ ð0;�300om=s; 0; 0Þ. Furthermore, for spacecraft 4, 5, and 6 we are given
b4 ¼ 0, b5 ¼ 2p=3, and b6 ¼ 4p=3, respectively.

Table VIII. Spacecraft fuel consumption with optimal permutation: Example 1

Spacecraft i i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 i ¼ 6 Total

Unit: 10�3 kg 0.0896 0.0875 2.9238 0.0933 0.0892 4.8546 8.1380

Figure 9. (a) Formation pattern at ta; (b) desired formation pattern: Example 2 ($ denotes the imaginary
leader spacecraft).

Table IX. Formation reconfiguration fuel cost data: Example 2 (unit: 10�3 kg).

Iðm*
i; jðt; ta; tb; *ll

* ÞÞ j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4

i ¼ 1 7.1306 8.2036 8.7105 7.1506
i ¼ 2 8.2673 14.2557 14.1634 7.6879
i ¼ 3 7.0501 12.4297 15.3806 9.5138
i ¼ 4 9.0948 7.0934 6.9853 8.4996
i ¼ 5 10.8334 18.6632 17.3568 9.0399
i ¼ 6 8.3990 15.0112 19.7912 12.6918

MULTI AGENT OPTIMIZATION 277

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:243–283



Figure 10. Relative position (a) xI, (b) yI, (c) zI: Example 2.
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Figure 11. Control input. (a) ux, (b) uy, (c) uz: Example 2.
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Next, 4 spacecraft are required to form a new formation pattern that has four allowable
positions distributed on one primary formation orbit (see Figure 9(b)) specified by (73) with
ðXC; vy0 ; vz0 ; z0Þ ¼ ð1200 m;�200om=s;�200om=s; 0Þ. Furthermore, for the allowable position
1, 2, 3, and 4 in the new formation pattern b1 ¼ 0, b2 ¼ p=2, b3 ¼ p, and b4 ¼ 3p=2,
respectively. In this example, yP in (73) is allowed to be selected freely from ½0;p=2� rad.

The optimization algorithm described in Section 4 yields y*
P ¼ 0:588 rad for the new

formation pattern. The fuel cost for spacecraft Si, i ¼ 1; . . . ; 6, to relocate to the allowable
location Pj, j ¼ 1; . . . ; 4, in the new formation pattern specified by y*

P is given in Table IX. The
dynamic-programming-styled task assignment algorithm yields H * ¼ ½3; 1; 4; 2� to be the
optimal spacecraft permutation in the new formation pattern specified by y*

P . Note that H *

indicates that spacecraft 1, 2, 3, and 4 participate in the new 4 spacecraft formation while
spacecraft 5 and 6 continue along their initial thrust free periodic trajectories. Figure 10 gives
the fuel optimal spacecraft formation reconfiguration trajectories for spacecraft 1, 2, 3, and 4 as
well as the unaltered thrust free trajectories for spacecraft 5 and 6. Furthermore, Figure 11
provides the thrust histories for all the 6 spacecraft. Finally, the total fuel mass consumed by
each spacecraft is given in Table X.

Remark 5.1
For the above two examples, utilizing the spherical Earth model leading to nonlinear relative
dynamics of spacecraft, we validate our fuel optimal formation reconfiguration algorithm by
simulation. Specifically, we apply the optimal thrust program for spacecraft formation

Table X. Spacecraft fuel consumption with optimal permutation: Example 2.

Spacecraft i i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 i ¼ 6 Total

Unit: 10�3 kg 8.2036 7.6879 7.0501 6.9853 0.0 0.0 29.9269

Figure 12. Target position error under nonlinear simulation: (a) Example 1, (b) Example 2.
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reconfiguration manoeuvres generated by the linear dynamics model (according to Section 4.2)
in nonlinear simulation. As shown in Figure 12, under the nonlinear simulations, the offset of
each spacecraft at the end of its formation reconfiguration manoeuvre from the desired target
position is negligible. Alternatively, we define DSi ¼

4 R tb
ta
DviðtÞ dt, where DviðtÞ ¼

4 R t

ta
jui j dt for

ta4t4tb and i 2 fx; y; zg. Next, for each spacecraft that participated in formation reconfigura-
tion, we compute DS ¼ ðDS2

x þ DS2
y þ DS2

z Þ
1=2 and e ¼ ðe2x þ e2y þ e2zÞ

1=2, where ex, ey, and ez are
the x, y, and z components, respectively, of the final position offset under nonlinear simulation.
Then, in the two numerical examples considered, for every spacecraft that executed the
formation reconfiguration manoeuvre, the value of e=DS is determined to be in the order of 10�3

(or smaller). Finally, we modify the optimal thrust program of Section 4.2 to cancel the
nonlinear effect of spacecraft relative dynamics. We note that such a modified thrust program
eliminates the offset of each spacecraft at the end of its formation reconfiguration manoeuvre
from the desired target position without any significant change in the fuel cost (See Tables XI
and XII).

6. CONCLUSION

In this paper, we modelled and analysed the distributed spacecraft formation reconfiguration
problem as a multi-agent optimization problem. Specifically, we addressed the problem of fuel
minimization for spacecraft formation reconfiguration manoeuvres. Based on the qualitative
analysis of the formation reconfiguration formulation developed in this paper, we obtained an
optimal choice of the manoeuvre time intervals for all the spacecraft. Furthermore, we
developed an optimization technique for fuel optimal formation reconfiguration. Specifically,
we utilized the theory of calculus of variation, task assignment, and parameter optimization to
generate the fuel optimal formation reconfiguration manoeuvres. We obtained the general form
of fuel optimal manoeuvre for linearized dynamic model of a spacecraft with VSI propulsion
system. In addition, we developed a dynamic-programming-styled task assignment algorithm to
assign spacecraft to the allowable positions in the desired formation pattern. A communication
protocol has been proposed to implement this algorithm in a distributed manner. Finally, the
parameter optimization problem was solved using genetic algorithm. Illustrative numerical
simulations were presented to demonstrate the efficacy of the optimization algorithm. Future

Table XI. Spacecraft fuel consumption accounting for nonlinear dynamics: Example 1.

Spacecraft i i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 i ¼ 6 Total

Unit: 10�3 kg 0.0897 0.0877 2.9235 0.0937 0.0898 4.8492 8.1336

Table XII. Spacecraft fuel consumption accounting for nonlinear dynamics: Example 2.

Spacecraft i i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 i ¼ 6 Total

Unit: 10�3 kg 8.1953 7.6732 7.0345 6.9780 0.0 0.0 29.8810
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work will advance the optimization algorithm to account for perturbation effects, non-circular
orbits, and various constraints, e.g. spacecraft permutation constraints, spacecraft distance
constraint to ensure collision avoidance, thrust magnitude constraint, etc.
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